Lingyi Sun, Yanbin Zhang, Xin Cui, Qinglong An, Yun Chen, Dongzhou Jia, Peng Gong, Mingzheng Liu, Yusuf Suleiman Dambatta, Changhe Li
{"title":"磁性润滑剂:制备、物理机理及应用","authors":"Lingyi Sun, Yanbin Zhang, Xin Cui, Qinglong An, Yun Chen, Dongzhou Jia, Peng Gong, Mingzheng Liu, Yusuf Suleiman Dambatta, Changhe Li","doi":"10.26599/frict.2025.9441010","DOIUrl":null,"url":null,"abstract":" <p>Magnetic lubricants are emerging as advanced lubricants with controlled flowability and enhanced lubrication and heat transfer capabilities, showing potential for use in extreme conditions such as aerospace. Although their excellent properties have been preliminarily confirmed, the mechanisms by which these properties influence performance—including fluid dynamics, electromagnetism, and chemistry—require systematic investigation. This paper addresses this gap by systematically reviewing the preparation, physicochemical properties, and potential applications of magnetic lubricants. First, the formulations of magnetic lubricants, including the base fluid and stabilizing additives, are thoroughly examined, considering various magnetic materials and preparation methods to elucidate the mechanisms influencing dispersion stability and magnetic response. Next, the physical properties, such as saturation magnetization, viscosity, and flowability, are analyzed through theoretical and experimental studies, and constitutive models for the fluid dynamics of magnetic lubricants are summarized. Furthermore, the advanced tribological and thermal properties, as well as the physical behavior under magnetic fields, are discussed, highlighting the superior antifriction, antiwear, cooling, and controlled flowability performance compared to traditional lubricants. Finally, current applications and potential fields, such as bearings, machining, and heat exchangers, are reviewed. This paper provides a valuable reference for both theoretical studies and engineering applications of magnetic lubricants.</p> ","PeriodicalId":12442,"journal":{"name":"Friction","volume":"42 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic lubricants: Preparation, physical mechanism, and application\",\"authors\":\"Lingyi Sun, Yanbin Zhang, Xin Cui, Qinglong An, Yun Chen, Dongzhou Jia, Peng Gong, Mingzheng Liu, Yusuf Suleiman Dambatta, Changhe Li\",\"doi\":\"10.26599/frict.2025.9441010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" <p>Magnetic lubricants are emerging as advanced lubricants with controlled flowability and enhanced lubrication and heat transfer capabilities, showing potential for use in extreme conditions such as aerospace. Although their excellent properties have been preliminarily confirmed, the mechanisms by which these properties influence performance—including fluid dynamics, electromagnetism, and chemistry—require systematic investigation. This paper addresses this gap by systematically reviewing the preparation, physicochemical properties, and potential applications of magnetic lubricants. First, the formulations of magnetic lubricants, including the base fluid and stabilizing additives, are thoroughly examined, considering various magnetic materials and preparation methods to elucidate the mechanisms influencing dispersion stability and magnetic response. Next, the physical properties, such as saturation magnetization, viscosity, and flowability, are analyzed through theoretical and experimental studies, and constitutive models for the fluid dynamics of magnetic lubricants are summarized. Furthermore, the advanced tribological and thermal properties, as well as the physical behavior under magnetic fields, are discussed, highlighting the superior antifriction, antiwear, cooling, and controlled flowability performance compared to traditional lubricants. Finally, current applications and potential fields, such as bearings, machining, and heat exchangers, are reviewed. This paper provides a valuable reference for both theoretical studies and engineering applications of magnetic lubricants.</p> \",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26599/frict.2025.9441010\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441010","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Magnetic lubricants: Preparation, physical mechanism, and application
Magnetic lubricants are emerging as advanced lubricants with controlled flowability and enhanced lubrication and heat transfer capabilities, showing potential for use in extreme conditions such as aerospace. Although their excellent properties have been preliminarily confirmed, the mechanisms by which these properties influence performance—including fluid dynamics, electromagnetism, and chemistry—require systematic investigation. This paper addresses this gap by systematically reviewing the preparation, physicochemical properties, and potential applications of magnetic lubricants. First, the formulations of magnetic lubricants, including the base fluid and stabilizing additives, are thoroughly examined, considering various magnetic materials and preparation methods to elucidate the mechanisms influencing dispersion stability and magnetic response. Next, the physical properties, such as saturation magnetization, viscosity, and flowability, are analyzed through theoretical and experimental studies, and constitutive models for the fluid dynamics of magnetic lubricants are summarized. Furthermore, the advanced tribological and thermal properties, as well as the physical behavior under magnetic fields, are discussed, highlighting the superior antifriction, antiwear, cooling, and controlled flowability performance compared to traditional lubricants. Finally, current applications and potential fields, such as bearings, machining, and heat exchangers, are reviewed. This paper provides a valuable reference for both theoretical studies and engineering applications of magnetic lubricants.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.