Irene Molina , Ryan Mansell , Rui Liang , Benigno Crespo , Margarita Puente , Virginia Franco , Sara Viera , Isabel Camino , Anas Saadeddin , Peter Bellotti , Annie Leung , Sam Henning , Shan Sun , Mikayla Herring , Celia Lopez , Carmen Cuevas , Peter Pogány , Beatriz Urones , Leigh Baxt , Esther Fernández , Lydia Mata-Cantero
{"title":"PSAC通道在疟疾寄生虫存活中的关键作用是通过相关营养水平下的表型筛选来实现的","authors":"Irene Molina , Ryan Mansell , Rui Liang , Benigno Crespo , Margarita Puente , Virginia Franco , Sara Viera , Isabel Camino , Anas Saadeddin , Peter Bellotti , Annie Leung , Sam Henning , Shan Sun , Mikayla Herring , Celia Lopez , Carmen Cuevas , Peter Pogány , Beatriz Urones , Leigh Baxt , Esther Fernández , Lydia Mata-Cantero","doi":"10.1016/j.chembiol.2025.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>Spreading resistance to front-line treatments necessitate the search for new classes of antimalarials. Limitations of standard screening conditions lead us to develop an assay using culture media that more closely reflects nutrient levels in human serum to reveal new therapeutically relevant parasite pathways. Our approach was validated by testing 22k compounds followed by a full 750k compound screen and identified 29 chemotypes with higher activity in nutrient restricted media that were further characterized. Through a combination of chemo-genomics and innovative photocatalytic proximity labeling proteomics, we identified the target of two compounds as the CLAG3 component of the plasmodial surface anion channel (PSAC). Strikingly, every one of the other 29 chemotypes selected was also found to block PSAC activity, highlighting the importance of this nutrient channel for parasite survival under physiological conditions. The effect of PSAC inhibitors in the <em>in vivo</em> humanized mouse model was confirmed.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 6","pages":"Pages 826-838.e13"},"PeriodicalIF":7.2000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The critical role of PSAC channel in malaria parasite survival is driven home by phenotypic screening under relevant nutrient levels\",\"authors\":\"Irene Molina , Ryan Mansell , Rui Liang , Benigno Crespo , Margarita Puente , Virginia Franco , Sara Viera , Isabel Camino , Anas Saadeddin , Peter Bellotti , Annie Leung , Sam Henning , Shan Sun , Mikayla Herring , Celia Lopez , Carmen Cuevas , Peter Pogány , Beatriz Urones , Leigh Baxt , Esther Fernández , Lydia Mata-Cantero\",\"doi\":\"10.1016/j.chembiol.2025.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spreading resistance to front-line treatments necessitate the search for new classes of antimalarials. Limitations of standard screening conditions lead us to develop an assay using culture media that more closely reflects nutrient levels in human serum to reveal new therapeutically relevant parasite pathways. Our approach was validated by testing 22k compounds followed by a full 750k compound screen and identified 29 chemotypes with higher activity in nutrient restricted media that were further characterized. Through a combination of chemo-genomics and innovative photocatalytic proximity labeling proteomics, we identified the target of two compounds as the CLAG3 component of the plasmodial surface anion channel (PSAC). Strikingly, every one of the other 29 chemotypes selected was also found to block PSAC activity, highlighting the importance of this nutrient channel for parasite survival under physiological conditions. The effect of PSAC inhibitors in the <em>in vivo</em> humanized mouse model was confirmed.</div></div>\",\"PeriodicalId\":265,\"journal\":{\"name\":\"Cell Chemical Biology\",\"volume\":\"32 6\",\"pages\":\"Pages 826-838.e13\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451945625001369\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451945625001369","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The critical role of PSAC channel in malaria parasite survival is driven home by phenotypic screening under relevant nutrient levels
Spreading resistance to front-line treatments necessitate the search for new classes of antimalarials. Limitations of standard screening conditions lead us to develop an assay using culture media that more closely reflects nutrient levels in human serum to reveal new therapeutically relevant parasite pathways. Our approach was validated by testing 22k compounds followed by a full 750k compound screen and identified 29 chemotypes with higher activity in nutrient restricted media that were further characterized. Through a combination of chemo-genomics and innovative photocatalytic proximity labeling proteomics, we identified the target of two compounds as the CLAG3 component of the plasmodial surface anion channel (PSAC). Strikingly, every one of the other 29 chemotypes selected was also found to block PSAC activity, highlighting the importance of this nutrient channel for parasite survival under physiological conditions. The effect of PSAC inhibitors in the in vivo humanized mouse model was confirmed.
Cell Chemical BiologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍:
Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.