Yang Ding, Alvaro Fernández-Montero, Amir Mani, Elisa Casadei, Ryuichiro Miyazawa, Congjin Zhou, Lise Chaumont, Marijan Posavi, Stephen D. Cole, Yasuhiro Shibasaki, Fumio Takizawa, Irene Salinas, J. Oriol Sunyer
{"title":"分泌IgM调节肠道菌群稳态和代谢","authors":"Yang Ding, Alvaro Fernández-Montero, Amir Mani, Elisa Casadei, Ryuichiro Miyazawa, Congjin Zhou, Lise Chaumont, Marijan Posavi, Stephen D. Cole, Yasuhiro Shibasaki, Fumio Takizawa, Irene Salinas, J. Oriol Sunyer","doi":"10.1038/s41564-025-02013-8","DOIUrl":null,"url":null,"abstract":"<p>The coating of microbiota by secretory immunoglobulins (sIgs) determines which bacteria colonize the gut and influences bacterial metabolism. Previous work has identified sIgA and sIgT as mediators of gut homeostasis. However, sIgM coats a large proportion of the gut microbiota in humans and teleost fish, thus suggesting a conserved role of sIgM in microbiota homeostasis. Here, to investigate this hypothesis, we used the teleost rainbow trout as a model system. Depletion of IgM from trout resulted in severe microbiota-dependent gut tissue damage, body weight loss, bacterial translocation and gut dysbiosis. IgM depletion led also to alterations in microbiota-derived metabolites, including short-chain fatty acids and essential amino acids. Supporting a protective role for sIgM in the gut, high mortality of IgM-depleted fish occurred in an experimental colitis model as a result of severe systemic bacteraemia and septic shock. Our findings uncover sIgM as a previously unrecognized regulator of microbiota homeostasis and metabolism.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"44 1","pages":""},"PeriodicalIF":20.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secretory IgM regulates gut microbiota homeostasis and metabolism\",\"authors\":\"Yang Ding, Alvaro Fernández-Montero, Amir Mani, Elisa Casadei, Ryuichiro Miyazawa, Congjin Zhou, Lise Chaumont, Marijan Posavi, Stephen D. Cole, Yasuhiro Shibasaki, Fumio Takizawa, Irene Salinas, J. Oriol Sunyer\",\"doi\":\"10.1038/s41564-025-02013-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The coating of microbiota by secretory immunoglobulins (sIgs) determines which bacteria colonize the gut and influences bacterial metabolism. Previous work has identified sIgA and sIgT as mediators of gut homeostasis. However, sIgM coats a large proportion of the gut microbiota in humans and teleost fish, thus suggesting a conserved role of sIgM in microbiota homeostasis. Here, to investigate this hypothesis, we used the teleost rainbow trout as a model system. Depletion of IgM from trout resulted in severe microbiota-dependent gut tissue damage, body weight loss, bacterial translocation and gut dysbiosis. IgM depletion led also to alterations in microbiota-derived metabolites, including short-chain fatty acids and essential amino acids. Supporting a protective role for sIgM in the gut, high mortality of IgM-depleted fish occurred in an experimental colitis model as a result of severe systemic bacteraemia and septic shock. Our findings uncover sIgM as a previously unrecognized regulator of microbiota homeostasis and metabolism.</p>\",\"PeriodicalId\":18992,\"journal\":{\"name\":\"Nature Microbiology\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":20.5000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41564-025-02013-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-025-02013-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Secretory IgM regulates gut microbiota homeostasis and metabolism
The coating of microbiota by secretory immunoglobulins (sIgs) determines which bacteria colonize the gut and influences bacterial metabolism. Previous work has identified sIgA and sIgT as mediators of gut homeostasis. However, sIgM coats a large proportion of the gut microbiota in humans and teleost fish, thus suggesting a conserved role of sIgM in microbiota homeostasis. Here, to investigate this hypothesis, we used the teleost rainbow trout as a model system. Depletion of IgM from trout resulted in severe microbiota-dependent gut tissue damage, body weight loss, bacterial translocation and gut dysbiosis. IgM depletion led also to alterations in microbiota-derived metabolites, including short-chain fatty acids and essential amino acids. Supporting a protective role for sIgM in the gut, high mortality of IgM-depleted fish occurred in an experimental colitis model as a result of severe systemic bacteraemia and septic shock. Our findings uncover sIgM as a previously unrecognized regulator of microbiota homeostasis and metabolism.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.