微针集成FePc-MOF-MXene纳米酶贴片用于体内l -半胱氨酸监测。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ghazala Ashraf,Haonan Wang,Khalil Ahmed,Huiwen Xiong,Jilie Kong,Xueen Fang
{"title":"微针集成FePc-MOF-MXene纳米酶贴片用于体内l -半胱氨酸监测。","authors":"Ghazala Ashraf,Haonan Wang,Khalil Ahmed,Huiwen Xiong,Jilie Kong,Xueen Fang","doi":"10.1002/adma.202502804","DOIUrl":null,"url":null,"abstract":"Advancing clinical diagnostics requires platforms that combine catalytic efficiency, biocompatibility, and real-time, in vivo accessibility. Herein, this study reports a structurally integrated FePc-ZIF-8-MX nanozyme that combines the redox activity of FePc, the porous confinement of ZIF-8, and the electrical conductivity of MX. Synthesized via a low-energy, ambient-condition process, this hybrid enables efficient electron transfer, enhanced analyte enrichment, and sustained catalytic activity in physiological environments. To translate this functionality into a wearable diagnostic format, the hybrid is seamlessly incorporated into a microneedle array, offering minimally invasive access to interstitial fluid for continuous L-cysteine (L-Cys) monitoring. The resulting platform exhibits high selectivity and sensitivity across complex biological matrices, including serum, urine, cultured cells, and a murine model of myocardial infarction. This study presents a multifunctional electrochemical platform that enables on-body metabolite monitoring through a microneedle-integrated nanozyme interface. To the best of our knowledge, it constitutes the first realization of real-time, in vivo L-Cys sensing in this format, setting a new benchmark for precision biosensing in translational healthcare.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"51 1","pages":"e2502804"},"PeriodicalIF":27.4000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microneedle-Integrated FePc-MOF-MXene Nanozyme Patch for In Vivo L-Cysteine Monitoring.\",\"authors\":\"Ghazala Ashraf,Haonan Wang,Khalil Ahmed,Huiwen Xiong,Jilie Kong,Xueen Fang\",\"doi\":\"10.1002/adma.202502804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advancing clinical diagnostics requires platforms that combine catalytic efficiency, biocompatibility, and real-time, in vivo accessibility. Herein, this study reports a structurally integrated FePc-ZIF-8-MX nanozyme that combines the redox activity of FePc, the porous confinement of ZIF-8, and the electrical conductivity of MX. Synthesized via a low-energy, ambient-condition process, this hybrid enables efficient electron transfer, enhanced analyte enrichment, and sustained catalytic activity in physiological environments. To translate this functionality into a wearable diagnostic format, the hybrid is seamlessly incorporated into a microneedle array, offering minimally invasive access to interstitial fluid for continuous L-cysteine (L-Cys) monitoring. The resulting platform exhibits high selectivity and sensitivity across complex biological matrices, including serum, urine, cultured cells, and a murine model of myocardial infarction. This study presents a multifunctional electrochemical platform that enables on-body metabolite monitoring through a microneedle-integrated nanozyme interface. To the best of our knowledge, it constitutes the first realization of real-time, in vivo L-Cys sensing in this format, setting a new benchmark for precision biosensing in translational healthcare.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"51 1\",\"pages\":\"e2502804\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202502804\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202502804","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

推进临床诊断需要结合催化效率、生物相容性和实时、体内可及性的平台。本研究报道了一种结构完整的FePc-ZIF-8-MX纳米酶,它结合了FePc的氧化还原活性、ZIF-8的多孔约束和MX的导电性。这种混合物通过低能量、环境条件合成,能够实现高效的电子转移,增强分析物的富集,并在生理环境中保持催化活性。为了将这种功能转化为可穿戴诊断格式,该混合型仪器无缝地集成到微针阵列中,提供对间质液的微创访问,以连续监测l -半胱氨酸(L-Cys)。由此产生的平台在复杂的生物基质(包括血清、尿液、培养细胞和小鼠心肌梗死模型)中表现出高选择性和敏感性。本研究提出了一种多功能电化学平台,通过微针集成纳米酶界面实现体内代谢物监测。据我们所知,它构成了实时的第一个实现,体内L-Cys传感在这种格式,设置了一个新的基准,在转化医疗的精密生物传感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microneedle-Integrated FePc-MOF-MXene Nanozyme Patch for In Vivo L-Cysteine Monitoring.
Advancing clinical diagnostics requires platforms that combine catalytic efficiency, biocompatibility, and real-time, in vivo accessibility. Herein, this study reports a structurally integrated FePc-ZIF-8-MX nanozyme that combines the redox activity of FePc, the porous confinement of ZIF-8, and the electrical conductivity of MX. Synthesized via a low-energy, ambient-condition process, this hybrid enables efficient electron transfer, enhanced analyte enrichment, and sustained catalytic activity in physiological environments. To translate this functionality into a wearable diagnostic format, the hybrid is seamlessly incorporated into a microneedle array, offering minimally invasive access to interstitial fluid for continuous L-cysteine (L-Cys) monitoring. The resulting platform exhibits high selectivity and sensitivity across complex biological matrices, including serum, urine, cultured cells, and a murine model of myocardial infarction. This study presents a multifunctional electrochemical platform that enables on-body metabolite monitoring through a microneedle-integrated nanozyme interface. To the best of our knowledge, it constitutes the first realization of real-time, in vivo L-Cys sensing in this format, setting a new benchmark for precision biosensing in translational healthcare.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信