超高速垂直照明自驱动横向不对称InSe光电探测器。

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-05-23 DOI:10.1039/d5nr00465a
Srinivasa Reddy Tamalampudi,Ghada Dushaq,Mahmoud S Rasras
{"title":"超高速垂直照明自驱动横向不对称InSe光电探测器。","authors":"Srinivasa Reddy Tamalampudi,Ghada Dushaq,Mahmoud S Rasras","doi":"10.1039/d5nr00465a","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) materials have emerged as a promising platform for next-generation optoelectronic devices due to their unique electronic, optical, and mechanical properties, offering unprecedented opportunities for high-performance, low-power photodetection. We demonstrate a high-speed, zero-bias Au-InSe-multilayered graphene photodetector with an ultra-low dark current of 0.1 nA and photovoltaic-effect-driven photocurrent generation. The device exhibits a responsivity of 57.15 mA W-1 and a detectivity of 1.58 × 109 Jones at a wavelength of 785 nm. The device achieves an RF 3 dB bandwidth of 2.5 MHz, corresponding to an ultrafast response time of 140 ns, establishing a new benchmark for zero-bias InSe photodetectors. The exceptional performance is attributed to using asymmetric electrodes, which establish a built-in electric field within the depletion region. This field facilitates the rapid separation of photogenerated electron-hole pairs, which reduces carrier lifetime and minimizes recombination effects, thereby significantly boosting the response speed. Our results underscore the potential of InSe photodetectors with asymmetric contacts for achieving low dark current, high-speed operation, and low power consumption, offering a promising pathway for the development of next-generation optoelectronic devices based on 2D materials.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"10 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ultra-high-speed vertically illuminated self-driven lateral asymmetric InSe photodetector.\",\"authors\":\"Srinivasa Reddy Tamalampudi,Ghada Dushaq,Mahmoud S Rasras\",\"doi\":\"10.1039/d5nr00465a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional (2D) materials have emerged as a promising platform for next-generation optoelectronic devices due to their unique electronic, optical, and mechanical properties, offering unprecedented opportunities for high-performance, low-power photodetection. We demonstrate a high-speed, zero-bias Au-InSe-multilayered graphene photodetector with an ultra-low dark current of 0.1 nA and photovoltaic-effect-driven photocurrent generation. The device exhibits a responsivity of 57.15 mA W-1 and a detectivity of 1.58 × 109 Jones at a wavelength of 785 nm. The device achieves an RF 3 dB bandwidth of 2.5 MHz, corresponding to an ultrafast response time of 140 ns, establishing a new benchmark for zero-bias InSe photodetectors. The exceptional performance is attributed to using asymmetric electrodes, which establish a built-in electric field within the depletion region. This field facilitates the rapid separation of photogenerated electron-hole pairs, which reduces carrier lifetime and minimizes recombination effects, thereby significantly boosting the response speed. Our results underscore the potential of InSe photodetectors with asymmetric contacts for achieving low dark current, high-speed operation, and low power consumption, offering a promising pathway for the development of next-generation optoelectronic devices based on 2D materials.\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nr00465a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr00465a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)材料由于其独特的电子、光学和机械性能,已经成为下一代光电器件的一个有前途的平台,为高性能、低功耗光探测提供了前所未有的机会。我们展示了一种高速、零偏置的au - inse多层石墨烯光电探测器,具有0.1 nA的超低暗电流和光伏效应驱动的光电流产生。该器件在785 nm波长处的响应度为57.15 mA W-1,探测率为1.58 × 109 Jones。该器件实现了2.5 MHz的RF 3db带宽,对应于140 ns的超快响应时间,为零偏置InSe光电探测器建立了新的基准。这种优异的性能归功于使用了不对称电极,在耗尽区建立了内置电场。该场促进了光生电子-空穴对的快速分离,减少了载流子寿命,最大限度地减少了复合效应,从而显著提高了响应速度。我们的研究结果强调了具有非对称触点的InSe光电探测器在实现低暗电流、高速运行和低功耗方面的潜力,为基于二维材料的下一代光电器件的开发提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ultra-high-speed vertically illuminated self-driven lateral asymmetric InSe photodetector.
Two-dimensional (2D) materials have emerged as a promising platform for next-generation optoelectronic devices due to their unique electronic, optical, and mechanical properties, offering unprecedented opportunities for high-performance, low-power photodetection. We demonstrate a high-speed, zero-bias Au-InSe-multilayered graphene photodetector with an ultra-low dark current of 0.1 nA and photovoltaic-effect-driven photocurrent generation. The device exhibits a responsivity of 57.15 mA W-1 and a detectivity of 1.58 × 109 Jones at a wavelength of 785 nm. The device achieves an RF 3 dB bandwidth of 2.5 MHz, corresponding to an ultrafast response time of 140 ns, establishing a new benchmark for zero-bias InSe photodetectors. The exceptional performance is attributed to using asymmetric electrodes, which establish a built-in electric field within the depletion region. This field facilitates the rapid separation of photogenerated electron-hole pairs, which reduces carrier lifetime and minimizes recombination effects, thereby significantly boosting the response speed. Our results underscore the potential of InSe photodetectors with asymmetric contacts for achieving low dark current, high-speed operation, and low power consumption, offering a promising pathway for the development of next-generation optoelectronic devices based on 2D materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信