{"title":"基于数值模拟和熔喷层叠技术的高效高效PPS梯度过滤材料。","authors":"Jian You,Hongxiang Zhang,Yongzhao Li,Wei Wang,Longmin Liu,Huaiyin Chen,Jianying Huang,Zuheng Wu,Meihua Wu,Bing Zhang,Xiaojun Bao,Yuekun Lai,Weilong Cai","doi":"10.1021/acs.est.4c11406","DOIUrl":null,"url":null,"abstract":"The filter material is the key to controlling flue gas pollution with bag filter technology. Surface treatment of filter media using the PTFE membrane can improve its filtration performance. Badly, the reprocessing of used filter media has become a major challenge due to the ecological impact and potential human toxicity of PTFE. Herein, a novel PPS-based gradient filtration material (mPPS-25/NF-5) with high efficiency, low resistance, and controllability was prepared by combining numerical simulation, high-temperature melt-blown process, and lamination technology with PPS micronano-embedded fiber membranes (mPPS) as the surface layer structure. Benefiting from the three-dimensional porous network structure formed by the staggered arrangement of fibers in mPPS and the effective prediction and optimization of the structural performance of the designed filter media in advance, mPPS-25/NF-5 demonstrated superior filtration performance. Specifically, compared with commercial PTFE membrane lamination filter media, the average cleaning cycle of mPPS-25/NF-5 has been improved by 188.13 s, while the average residual resistance has been reduced by 41.84 Pa, which truly realizes a high efficiency, low resistance, and long service life. This work may offer fresh insight into new materials and their rapid and controllable production methods for flue gas purification under \"ultralow emission\" measures.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"137 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PPS Gradient Filter Material with High Efficiency and Excellent Dust Removal Capacity for Industrial Flue Gas Treatment by Integrating Numerical Modeling and Melt-Blown-Lamination Technology.\",\"authors\":\"Jian You,Hongxiang Zhang,Yongzhao Li,Wei Wang,Longmin Liu,Huaiyin Chen,Jianying Huang,Zuheng Wu,Meihua Wu,Bing Zhang,Xiaojun Bao,Yuekun Lai,Weilong Cai\",\"doi\":\"10.1021/acs.est.4c11406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The filter material is the key to controlling flue gas pollution with bag filter technology. Surface treatment of filter media using the PTFE membrane can improve its filtration performance. Badly, the reprocessing of used filter media has become a major challenge due to the ecological impact and potential human toxicity of PTFE. Herein, a novel PPS-based gradient filtration material (mPPS-25/NF-5) with high efficiency, low resistance, and controllability was prepared by combining numerical simulation, high-temperature melt-blown process, and lamination technology with PPS micronano-embedded fiber membranes (mPPS) as the surface layer structure. Benefiting from the three-dimensional porous network structure formed by the staggered arrangement of fibers in mPPS and the effective prediction and optimization of the structural performance of the designed filter media in advance, mPPS-25/NF-5 demonstrated superior filtration performance. Specifically, compared with commercial PTFE membrane lamination filter media, the average cleaning cycle of mPPS-25/NF-5 has been improved by 188.13 s, while the average residual resistance has been reduced by 41.84 Pa, which truly realizes a high efficiency, low resistance, and long service life. This work may offer fresh insight into new materials and their rapid and controllable production methods for flue gas purification under \\\"ultralow emission\\\" measures.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"137 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c11406\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c11406","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
PPS Gradient Filter Material with High Efficiency and Excellent Dust Removal Capacity for Industrial Flue Gas Treatment by Integrating Numerical Modeling and Melt-Blown-Lamination Technology.
The filter material is the key to controlling flue gas pollution with bag filter technology. Surface treatment of filter media using the PTFE membrane can improve its filtration performance. Badly, the reprocessing of used filter media has become a major challenge due to the ecological impact and potential human toxicity of PTFE. Herein, a novel PPS-based gradient filtration material (mPPS-25/NF-5) with high efficiency, low resistance, and controllability was prepared by combining numerical simulation, high-temperature melt-blown process, and lamination technology with PPS micronano-embedded fiber membranes (mPPS) as the surface layer structure. Benefiting from the three-dimensional porous network structure formed by the staggered arrangement of fibers in mPPS and the effective prediction and optimization of the structural performance of the designed filter media in advance, mPPS-25/NF-5 demonstrated superior filtration performance. Specifically, compared with commercial PTFE membrane lamination filter media, the average cleaning cycle of mPPS-25/NF-5 has been improved by 188.13 s, while the average residual resistance has been reduced by 41.84 Pa, which truly realizes a high efficiency, low resistance, and long service life. This work may offer fresh insight into new materials and their rapid and controllable production methods for flue gas purification under "ultralow emission" measures.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.