Katja Schlegel, Nils R Sommer, Marcello Mortillaro
{"title":"大型语言模型精通解决和创建情商测试。","authors":"Katja Schlegel, Nils R Sommer, Marcello Mortillaro","doi":"10.1038/s44271-025-00258-x","DOIUrl":null,"url":null,"abstract":"<p><p>Large Language Models (LLMs) demonstrate expertise across diverse domains, yet their capacity for emotional intelligence remains uncertain. This research examined whether LLMs can solve and generate performance-based emotional intelligence tests. Results showed that ChatGPT-4, ChatGPT-o1, Gemini 1.5 flash, Copilot 365, Claude 3.5 Haiku, and DeepSeek V3 outperformed humans on five standard emotional intelligence tests, achieving an average accuracy of 81%, compared to the 56% human average reported in the original validation studies. In a second step, ChatGPT-4 generated new test items for each emotional intelligence test. These new versions and the original tests were administered to human participants across five studies (total N = 467). Overall, original and ChatGPT-generated tests demonstrated statistically equivalent test difficulty. Perceived item clarity and realism, item content diversity, internal consistency, correlations with a vocabulary test, and correlations with an external ability emotional intelligence test were not statistically equivalent between original and ChatGPT-generated tests. However, all differences were smaller than Cohen's d ± 0.25, and none of the 95% confidence interval boundaries exceeded a medium effect size (d ± 0.50). Additionally, original and ChatGPT-generated tests were strongly correlated (r = 0.46). These findings suggest that LLMs can generate responses that are consistent with accurate knowledge about human emotions and their regulation.</p>","PeriodicalId":501698,"journal":{"name":"Communications Psychology","volume":"3 1","pages":"80"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095572/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large language models are proficient in solving and creating emotional intelligence tests.\",\"authors\":\"Katja Schlegel, Nils R Sommer, Marcello Mortillaro\",\"doi\":\"10.1038/s44271-025-00258-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large Language Models (LLMs) demonstrate expertise across diverse domains, yet their capacity for emotional intelligence remains uncertain. This research examined whether LLMs can solve and generate performance-based emotional intelligence tests. Results showed that ChatGPT-4, ChatGPT-o1, Gemini 1.5 flash, Copilot 365, Claude 3.5 Haiku, and DeepSeek V3 outperformed humans on five standard emotional intelligence tests, achieving an average accuracy of 81%, compared to the 56% human average reported in the original validation studies. In a second step, ChatGPT-4 generated new test items for each emotional intelligence test. These new versions and the original tests were administered to human participants across five studies (total N = 467). Overall, original and ChatGPT-generated tests demonstrated statistically equivalent test difficulty. Perceived item clarity and realism, item content diversity, internal consistency, correlations with a vocabulary test, and correlations with an external ability emotional intelligence test were not statistically equivalent between original and ChatGPT-generated tests. However, all differences were smaller than Cohen's d ± 0.25, and none of the 95% confidence interval boundaries exceeded a medium effect size (d ± 0.50). Additionally, original and ChatGPT-generated tests were strongly correlated (r = 0.46). These findings suggest that LLMs can generate responses that are consistent with accurate knowledge about human emotions and their regulation.</p>\",\"PeriodicalId\":501698,\"journal\":{\"name\":\"Communications Psychology\",\"volume\":\"3 1\",\"pages\":\"80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095572/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44271-025-00258-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44271-025-00258-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large language models are proficient in solving and creating emotional intelligence tests.
Large Language Models (LLMs) demonstrate expertise across diverse domains, yet their capacity for emotional intelligence remains uncertain. This research examined whether LLMs can solve and generate performance-based emotional intelligence tests. Results showed that ChatGPT-4, ChatGPT-o1, Gemini 1.5 flash, Copilot 365, Claude 3.5 Haiku, and DeepSeek V3 outperformed humans on five standard emotional intelligence tests, achieving an average accuracy of 81%, compared to the 56% human average reported in the original validation studies. In a second step, ChatGPT-4 generated new test items for each emotional intelligence test. These new versions and the original tests were administered to human participants across five studies (total N = 467). Overall, original and ChatGPT-generated tests demonstrated statistically equivalent test difficulty. Perceived item clarity and realism, item content diversity, internal consistency, correlations with a vocabulary test, and correlations with an external ability emotional intelligence test were not statistically equivalent between original and ChatGPT-generated tests. However, all differences were smaller than Cohen's d ± 0.25, and none of the 95% confidence interval boundaries exceeded a medium effect size (d ± 0.50). Additionally, original and ChatGPT-generated tests were strongly correlated (r = 0.46). These findings suggest that LLMs can generate responses that are consistent with accurate knowledge about human emotions and their regulation.