Rong Jin, Peng Zhao, Mengxiao Yan, Ming Liu, Weijuan Fan, Qiangqiang Zhang, Xiaoya Zhu, Jing Wang, Yongchao Yu, Jun Yang, Hongxia Wang, Zhonghou Tang
{"title":"高亲和力K+转运体IbHAK5促进甘薯钾离子吸收,改善根形态。","authors":"Rong Jin, Peng Zhao, Mengxiao Yan, Ming Liu, Weijuan Fan, Qiangqiang Zhang, Xiaoya Zhu, Jing Wang, Yongchao Yu, Jun Yang, Hongxia Wang, Zhonghou Tang","doi":"10.1007/s11248-025-00437-w","DOIUrl":null,"url":null,"abstract":"<p><p>Potassium is a vital element in sweetpotato that plays important roles during its growth and development. In this study, potassium transporter IbHAK5, which is homologous to Arabidopsis HAK5, was cloned and overexpressed in sweetpotato. IbHAK5 encoded a protein of 739 amino acids and localized in the plasma membrane. Two IbHAK5-overexpressing transgenic lines with the highest expression level of IbHAK5 were screened for K<sup>+</sup>-deficiency stress tolerant assay. Compared with wild type sweetpotato plants, transgenic plants grew well with higher chlorophyll content, and maintain great higher K<sup>+</sup> contents via decreasing more K<sup>+</sup> effluxes under low potassium ion (- K<sup>+</sup>) stress condition. Additionally, IbHAK5 can help plants improve root morphology and increase endogenous hormone IAA content under both normal condition and - K<sup>+</sup> stress, which may result in the increased root K<sup>+</sup> absorption ability. The results indicated that IbHAK5 play an important role in sweetpotato response to - K<sup>+</sup> stress, as well as support molecular-assisted breeding with the IbHAK5 gene.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"34 1","pages":"25"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The high-affinity K<sup>+</sup> transporter IbHAK5 enhances potassium ion absorption and improves root morphology in sweetpotato (Ipomoea batatas).\",\"authors\":\"Rong Jin, Peng Zhao, Mengxiao Yan, Ming Liu, Weijuan Fan, Qiangqiang Zhang, Xiaoya Zhu, Jing Wang, Yongchao Yu, Jun Yang, Hongxia Wang, Zhonghou Tang\",\"doi\":\"10.1007/s11248-025-00437-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Potassium is a vital element in sweetpotato that plays important roles during its growth and development. In this study, potassium transporter IbHAK5, which is homologous to Arabidopsis HAK5, was cloned and overexpressed in sweetpotato. IbHAK5 encoded a protein of 739 amino acids and localized in the plasma membrane. Two IbHAK5-overexpressing transgenic lines with the highest expression level of IbHAK5 were screened for K<sup>+</sup>-deficiency stress tolerant assay. Compared with wild type sweetpotato plants, transgenic plants grew well with higher chlorophyll content, and maintain great higher K<sup>+</sup> contents via decreasing more K<sup>+</sup> effluxes under low potassium ion (- K<sup>+</sup>) stress condition. Additionally, IbHAK5 can help plants improve root morphology and increase endogenous hormone IAA content under both normal condition and - K<sup>+</sup> stress, which may result in the increased root K<sup>+</sup> absorption ability. The results indicated that IbHAK5 play an important role in sweetpotato response to - K<sup>+</sup> stress, as well as support molecular-assisted breeding with the IbHAK5 gene.</p>\",\"PeriodicalId\":23258,\"journal\":{\"name\":\"Transgenic Research\",\"volume\":\"34 1\",\"pages\":\"25\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transgenic Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11248-025-00437-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transgenic Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-025-00437-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The high-affinity K+ transporter IbHAK5 enhances potassium ion absorption and improves root morphology in sweetpotato (Ipomoea batatas).
Potassium is a vital element in sweetpotato that plays important roles during its growth and development. In this study, potassium transporter IbHAK5, which is homologous to Arabidopsis HAK5, was cloned and overexpressed in sweetpotato. IbHAK5 encoded a protein of 739 amino acids and localized in the plasma membrane. Two IbHAK5-overexpressing transgenic lines with the highest expression level of IbHAK5 were screened for K+-deficiency stress tolerant assay. Compared with wild type sweetpotato plants, transgenic plants grew well with higher chlorophyll content, and maintain great higher K+ contents via decreasing more K+ effluxes under low potassium ion (- K+) stress condition. Additionally, IbHAK5 can help plants improve root morphology and increase endogenous hormone IAA content under both normal condition and - K+ stress, which may result in the increased root K+ absorption ability. The results indicated that IbHAK5 play an important role in sweetpotato response to - K+ stress, as well as support molecular-assisted breeding with the IbHAK5 gene.
期刊介绍:
Transgenic Research focusses on transgenic and genome edited higher organisms. Manuscripts emphasizing biotechnological applications are strongly encouraged. Intellectual property, ethical issues, societal impact and regulatory aspects also fall within the scope of the journal. Transgenic Research aims to bridge the gap between fundamental and applied science in molecular biology and biotechnology for the plant and animal academic and associated industry communities.
Transgenic Research publishes
-Original Papers
-Reviews:
Should critically summarize the current state-of-the-art of the subject in a dispassionate way. Authors are requested to contact a Board Member before submission. Reviews should not be descriptive; rather they should present the most up-to-date information on the subject in a dispassionate and critical way. Perspective Reviews which can address new or controversial aspects are encouraged.
-Brief Communications:
Should report significant developments in methodology and experimental transgenic higher organisms