Xi Feng, Xiaoman Wang, Shouhong Guang, Shanshan Pang, Haiqing Tang
{"title":"抑制核仁RNA外泌体有助于适应饥饿。","authors":"Xi Feng, Xiaoman Wang, Shouhong Guang, Shanshan Pang, Haiqing Tang","doi":"10.1371/journal.pbio.3003190","DOIUrl":null,"url":null,"abstract":"<p><p>In response to nutrient scarcity, cells must reallocate their limited energy for cellular maintenance at the expense of certain processes. How such a tradeoff is achieved remains largely unknown. RNA surveillance is crucial for the integrity of the transcriptome, whose defects are associated with several human diseases. Unexpectedly, we discover that the nucleolar RNA exosome, a key RNA surveillance machine, is inhibited by starvation. This is not merely the cessation of a temporarily non-essential process, but rather a key signal to allocate energy. By rewiring one-carbon metabolism, the inhibition of RNA exosome reduces translation, the most energy-consuming process. Energy is then conserved for fat synthesis to enhance cellular maintenance and starvation survival. Notably, while benefiting starvation fitness, RNA exosome inhibition impairs the life span of well-fed animals, indicating a tradeoff between short-term and long-term fitness. Our findings suggest that the nucleolar RNA surveillance can be temporarily sacrificed to facilitate starvation adaptation.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 5","pages":"e3003190"},"PeriodicalIF":9.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of the nucleolar RNA exosome facilitates adaptation to starvation.\",\"authors\":\"Xi Feng, Xiaoman Wang, Shouhong Guang, Shanshan Pang, Haiqing Tang\",\"doi\":\"10.1371/journal.pbio.3003190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to nutrient scarcity, cells must reallocate their limited energy for cellular maintenance at the expense of certain processes. How such a tradeoff is achieved remains largely unknown. RNA surveillance is crucial for the integrity of the transcriptome, whose defects are associated with several human diseases. Unexpectedly, we discover that the nucleolar RNA exosome, a key RNA surveillance machine, is inhibited by starvation. This is not merely the cessation of a temporarily non-essential process, but rather a key signal to allocate energy. By rewiring one-carbon metabolism, the inhibition of RNA exosome reduces translation, the most energy-consuming process. Energy is then conserved for fat synthesis to enhance cellular maintenance and starvation survival. Notably, while benefiting starvation fitness, RNA exosome inhibition impairs the life span of well-fed animals, indicating a tradeoff between short-term and long-term fitness. Our findings suggest that the nucleolar RNA surveillance can be temporarily sacrificed to facilitate starvation adaptation.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"23 5\",\"pages\":\"e3003190\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3003190\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003190","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Inhibition of the nucleolar RNA exosome facilitates adaptation to starvation.
In response to nutrient scarcity, cells must reallocate their limited energy for cellular maintenance at the expense of certain processes. How such a tradeoff is achieved remains largely unknown. RNA surveillance is crucial for the integrity of the transcriptome, whose defects are associated with several human diseases. Unexpectedly, we discover that the nucleolar RNA exosome, a key RNA surveillance machine, is inhibited by starvation. This is not merely the cessation of a temporarily non-essential process, but rather a key signal to allocate energy. By rewiring one-carbon metabolism, the inhibition of RNA exosome reduces translation, the most energy-consuming process. Energy is then conserved for fat synthesis to enhance cellular maintenance and starvation survival. Notably, while benefiting starvation fitness, RNA exosome inhibition impairs the life span of well-fed animals, indicating a tradeoff between short-term and long-term fitness. Our findings suggest that the nucleolar RNA surveillance can be temporarily sacrificed to facilitate starvation adaptation.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.