Liangying Yin, Yuping Lin, Jinghong Qiu, Yong Xiang, Ming Li, Xiao Xiao, Simon Sai-Yu Lui, Hon-Cheong So
{"title":"整合脑成像特征和重性抑郁症亚型的基因组图谱。","authors":"Liangying Yin, Yuping Lin, Jinghong Qiu, Yong Xiang, Ming Li, Xiao Xiao, Simon Sai-Yu Lui, Hon-Cheong So","doi":"10.1017/S0033291725001096","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Precise stratification of patients into homogeneous disease subgroups could address the heterogeneity of phenotypes and enhance understanding of the pathophysiology underlying specific subtypes. Existing literature on subtyping patients with major depressive disorder (MDD) mainly utilized clinical features only. Genomic and imaging data may improve subtyping, but advanced methods are required due to the high dimensionality of features.</p><p><strong>Methods: </strong>We propose a novel disease subtyping framework for MDD by integrating brain structural features, genotype-predicted expression levels in brain tissues, and clinical features. Using a multi-view biclustering approach, we classify patients into clinically and biologically homogeneous subgroups. Additionally, we propose approaches to identify causally relevant genes for clustering.</p><p><strong>Results: </strong>We verified the reliability of the subtyping model by internal and external validation. High prediction strengths (PS) (average PS: 0.896, minimum: 0.854), a measure of generalizability of the derived clusters in independent datasets, support the validity of our approach. External validation using patient outcome variables (treatment response and hospitalization risks) confirmed the clinical relevance of the identified subgroups. Furthermore, subtype-defining genes overlapped with known susceptibility genes for MDD and were involved in relevant biological pathways. In addition, drug repositioning analysis based on these genes prioritized promising candidates for subtype-specific treatments.</p><p><strong>Conclusions: </strong>Our approach successfully stratified MDD patients into subgroups with distinct clinical prognoses. The identification of biologically and clinically meaningful subtypes may enable more personalized treatment strategies. This study also provides a framework for disease subtyping that can be extended to other complex disorders.</p>","PeriodicalId":20891,"journal":{"name":"Psychological Medicine","volume":"55 ","pages":"e158"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115278/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating brain imaging features and genomic profiles for the subtyping of major depression.\",\"authors\":\"Liangying Yin, Yuping Lin, Jinghong Qiu, Yong Xiang, Ming Li, Xiao Xiao, Simon Sai-Yu Lui, Hon-Cheong So\",\"doi\":\"10.1017/S0033291725001096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Precise stratification of patients into homogeneous disease subgroups could address the heterogeneity of phenotypes and enhance understanding of the pathophysiology underlying specific subtypes. Existing literature on subtyping patients with major depressive disorder (MDD) mainly utilized clinical features only. Genomic and imaging data may improve subtyping, but advanced methods are required due to the high dimensionality of features.</p><p><strong>Methods: </strong>We propose a novel disease subtyping framework for MDD by integrating brain structural features, genotype-predicted expression levels in brain tissues, and clinical features. Using a multi-view biclustering approach, we classify patients into clinically and biologically homogeneous subgroups. Additionally, we propose approaches to identify causally relevant genes for clustering.</p><p><strong>Results: </strong>We verified the reliability of the subtyping model by internal and external validation. High prediction strengths (PS) (average PS: 0.896, minimum: 0.854), a measure of generalizability of the derived clusters in independent datasets, support the validity of our approach. External validation using patient outcome variables (treatment response and hospitalization risks) confirmed the clinical relevance of the identified subgroups. Furthermore, subtype-defining genes overlapped with known susceptibility genes for MDD and were involved in relevant biological pathways. In addition, drug repositioning analysis based on these genes prioritized promising candidates for subtype-specific treatments.</p><p><strong>Conclusions: </strong>Our approach successfully stratified MDD patients into subgroups with distinct clinical prognoses. The identification of biologically and clinically meaningful subtypes may enable more personalized treatment strategies. This study also provides a framework for disease subtyping that can be extended to other complex disorders.</p>\",\"PeriodicalId\":20891,\"journal\":{\"name\":\"Psychological Medicine\",\"volume\":\"55 \",\"pages\":\"e158\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115278/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S0033291725001096\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0033291725001096","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Integrating brain imaging features and genomic profiles for the subtyping of major depression.
Background: Precise stratification of patients into homogeneous disease subgroups could address the heterogeneity of phenotypes and enhance understanding of the pathophysiology underlying specific subtypes. Existing literature on subtyping patients with major depressive disorder (MDD) mainly utilized clinical features only. Genomic and imaging data may improve subtyping, but advanced methods are required due to the high dimensionality of features.
Methods: We propose a novel disease subtyping framework for MDD by integrating brain structural features, genotype-predicted expression levels in brain tissues, and clinical features. Using a multi-view biclustering approach, we classify patients into clinically and biologically homogeneous subgroups. Additionally, we propose approaches to identify causally relevant genes for clustering.
Results: We verified the reliability of the subtyping model by internal and external validation. High prediction strengths (PS) (average PS: 0.896, minimum: 0.854), a measure of generalizability of the derived clusters in independent datasets, support the validity of our approach. External validation using patient outcome variables (treatment response and hospitalization risks) confirmed the clinical relevance of the identified subgroups. Furthermore, subtype-defining genes overlapped with known susceptibility genes for MDD and were involved in relevant biological pathways. In addition, drug repositioning analysis based on these genes prioritized promising candidates for subtype-specific treatments.
Conclusions: Our approach successfully stratified MDD patients into subgroups with distinct clinical prognoses. The identification of biologically and clinically meaningful subtypes may enable more personalized treatment strategies. This study also provides a framework for disease subtyping that can be extended to other complex disorders.
期刊介绍:
Now in its fifth decade of publication, Psychological Medicine is a leading international journal in the fields of psychiatry, related aspects of psychology and basic sciences. From 2014, there are 16 issues a year, each featuring original articles reporting key research being undertaken worldwide, together with shorter editorials by distinguished scholars and an important book review section. The journal''s success is clearly demonstrated by a consistently high impact factor.