多模态分析揭示了驱动灵长类前额皮质神经元电生理成熟的基因。

IF 15 1区 医学 Q1 NEUROSCIENCES
Yu Gao, Qiping Dong, Kalpana Hanthanan Arachchilage, Ryan D Risgaard, Moosa Syed, Jie Sheng, Danielle K Schmidt, Ting Jin, Shuang Liu, Soraya O Sandoval, Sara Knaack, Magnus T Eckholm, Rachel J Chen, Yu Guo, Dan Doherty, Ian Glass, Jon E Levine, Daifeng Wang, Qiang Chang, Xinyu Zhao, Andre M M Sousa
{"title":"多模态分析揭示了驱动灵长类前额皮质神经元电生理成熟的基因。","authors":"Yu Gao, Qiping Dong, Kalpana Hanthanan Arachchilage, Ryan D Risgaard, Moosa Syed, Jie Sheng, Danielle K Schmidt, Ting Jin, Shuang Liu, Soraya O Sandoval, Sara Knaack, Magnus T Eckholm, Rachel J Chen, Yu Guo, Dan Doherty, Ian Glass, Jon E Levine, Daifeng Wang, Qiang Chang, Xinyu Zhao, Andre M M Sousa","doi":"10.1016/j.neuron.2025.04.025","DOIUrl":null,"url":null,"abstract":"<p><p>The prefrontal cortex (PFC) is critical for myriad high-cognitive functions and is associated with several neuropsychiatric disorders. Here, using Patch-seq and single-nucleus multiomic analyses, we identified genes and regulatory networks governing the maturation of distinct neuronal populations in the PFC of rhesus macaque. We discovered that specific electrophysiological properties exhibited distinct maturational kinetics and identified key genes underlying these properties. We unveiled that RAPGEF4 is important for the maturation of resting membrane potential and inward sodium current in both macaque and human. We demonstrated that knockdown of CHD8, a high-confidence autism risk gene, in human and macaque organotypic slices led to impaired maturation, via downregulation of key genes, including RAPGEF4. Restoring the expression of RAPGEF4 rescued the proper electrophysiological maturation of CHD8-deficient neurons. Our study revealed regulators of neuronal maturation during a critical period of PFC development in primates and implicated such regulators in molecular processes underlying autism.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal analyses reveal genes driving electrophysiological maturation of neurons in the primate prefrontal cortex.\",\"authors\":\"Yu Gao, Qiping Dong, Kalpana Hanthanan Arachchilage, Ryan D Risgaard, Moosa Syed, Jie Sheng, Danielle K Schmidt, Ting Jin, Shuang Liu, Soraya O Sandoval, Sara Knaack, Magnus T Eckholm, Rachel J Chen, Yu Guo, Dan Doherty, Ian Glass, Jon E Levine, Daifeng Wang, Qiang Chang, Xinyu Zhao, Andre M M Sousa\",\"doi\":\"10.1016/j.neuron.2025.04.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prefrontal cortex (PFC) is critical for myriad high-cognitive functions and is associated with several neuropsychiatric disorders. Here, using Patch-seq and single-nucleus multiomic analyses, we identified genes and regulatory networks governing the maturation of distinct neuronal populations in the PFC of rhesus macaque. We discovered that specific electrophysiological properties exhibited distinct maturational kinetics and identified key genes underlying these properties. We unveiled that RAPGEF4 is important for the maturation of resting membrane potential and inward sodium current in both macaque and human. We demonstrated that knockdown of CHD8, a high-confidence autism risk gene, in human and macaque organotypic slices led to impaired maturation, via downregulation of key genes, including RAPGEF4. Restoring the expression of RAPGEF4 rescued the proper electrophysiological maturation of CHD8-deficient neurons. Our study revealed regulators of neuronal maturation during a critical period of PFC development in primates and implicated such regulators in molecular processes underlying autism.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2025.04.025\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.04.025","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

前额叶皮层(PFC)对许多高认知功能至关重要,并与几种神经精神疾病有关。在这里,我们使用Patch-seq和单核多组学分析,鉴定了恒河猴PFC中不同神经元群体成熟的基因和调控网络。我们发现特定的电生理特性表现出不同的成熟动力学,并确定了这些特性背后的关键基因。我们发现RAPGEF4对猕猴和人类静息膜电位和内向钠电流的成熟都很重要。我们证明,在人类和猕猴器官型切片中,通过下调包括RAPGEF4在内的关键基因,敲低CHD8(一个高可信度的自闭症风险基因)导致成熟受损。恢复RAPGEF4的表达可挽救chd8缺陷神经元的正常电生理成熟。我们的研究揭示了灵长类动物在PFC发育的关键时期神经元成熟的调节因子,并暗示这些调节因子与自闭症的分子过程有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal analyses reveal genes driving electrophysiological maturation of neurons in the primate prefrontal cortex.

The prefrontal cortex (PFC) is critical for myriad high-cognitive functions and is associated with several neuropsychiatric disorders. Here, using Patch-seq and single-nucleus multiomic analyses, we identified genes and regulatory networks governing the maturation of distinct neuronal populations in the PFC of rhesus macaque. We discovered that specific electrophysiological properties exhibited distinct maturational kinetics and identified key genes underlying these properties. We unveiled that RAPGEF4 is important for the maturation of resting membrane potential and inward sodium current in both macaque and human. We demonstrated that knockdown of CHD8, a high-confidence autism risk gene, in human and macaque organotypic slices led to impaired maturation, via downregulation of key genes, including RAPGEF4. Restoring the expression of RAPGEF4 rescued the proper electrophysiological maturation of CHD8-deficient neurons. Our study revealed regulators of neuronal maturation during a critical period of PFC development in primates and implicated such regulators in molecular processes underlying autism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信