TiN/SiO2核壳难熔等离子体纳米结构在无铅钙钛矿太阳能电池中实现了前所未有的26.7%的功率转换效率。

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ahmed A. Mohsen, Mohamed Zahran, S. E. D. Habib and Nageh K. Allam
{"title":"TiN/SiO2核壳难熔等离子体纳米结构在无铅钙钛矿太阳能电池中实现了前所未有的26.7%的功率转换效率。","authors":"Ahmed A. Mohsen, Mohamed Zahran, S. E. D. Habib and Nageh K. Allam","doi":"10.1039/D5NA00210A","DOIUrl":null,"url":null,"abstract":"<p >TiN/SiO<small><sub>2</sub></small> core–shell refractory plasmonic nanoparticles have been utilized as highly efficient nanoantennas to enhance the performance of lead-free perovskite solar cells (PSCs). The SiO<small><sub>2</sub></small> shell, selected for its high refractive index and low extinction coefficient, enables precise light control while minimizing optical losses. A 3D finite element method (FEM)-based optoelectronic model was developed to analyze the optical and electrical characteristics of both unmodified and TiN/SiO<small><sub>2</sub></small>-integrated PSCs. The results demonstrate a strong correlation between power conversion efficiency (PCE) and nanoparticle size. Incorporating 90 nm nanoparticles increases the PCE from 12.9% to 17.3%, while 115 nm nanoparticles achieve an impressive 26.7%, marking a 97.3% improvement. These findings highlight the pivotal role of tailored plasmonic nanostructures in maximizing light absorption and energy conversion. This study advances the understanding of plasmonic nanomaterials in photovoltaics and offers a viable strategy for enhancing the efficiency of lead-free PSCs. The integration of TiN/SiO<small><sub>2</sub></small> nanoparticles presents a promising pathway for developing high-performance, sustainable solar technologies.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" 12","pages":" 3859-3866"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091242/pdf/","citationCount":"0","resultStr":"{\"title\":\"TiN/SiO2 core–shell refractory plasmonic nanostructures unlock unprecedented 26.7% power conversion efficiency in Pb-free perovskite solar cells\",\"authors\":\"Ahmed A. Mohsen, Mohamed Zahran, S. E. D. Habib and Nageh K. Allam\",\"doi\":\"10.1039/D5NA00210A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >TiN/SiO<small><sub>2</sub></small> core–shell refractory plasmonic nanoparticles have been utilized as highly efficient nanoantennas to enhance the performance of lead-free perovskite solar cells (PSCs). The SiO<small><sub>2</sub></small> shell, selected for its high refractive index and low extinction coefficient, enables precise light control while minimizing optical losses. A 3D finite element method (FEM)-based optoelectronic model was developed to analyze the optical and electrical characteristics of both unmodified and TiN/SiO<small><sub>2</sub></small>-integrated PSCs. The results demonstrate a strong correlation between power conversion efficiency (PCE) and nanoparticle size. Incorporating 90 nm nanoparticles increases the PCE from 12.9% to 17.3%, while 115 nm nanoparticles achieve an impressive 26.7%, marking a 97.3% improvement. These findings highlight the pivotal role of tailored plasmonic nanostructures in maximizing light absorption and energy conversion. This study advances the understanding of plasmonic nanomaterials in photovoltaics and offers a viable strategy for enhancing the efficiency of lead-free PSCs. The integration of TiN/SiO<small><sub>2</sub></small> nanoparticles presents a promising pathway for developing high-performance, sustainable solar technologies.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" 12\",\"pages\":\" 3859-3866\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091242/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/na/d5na00210a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/na/d5na00210a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

TiN/SiO2核壳难熔等离子体纳米粒子作为高效纳米天线被用于提高无铅钙钛矿太阳能电池(PSCs)的性能。SiO2外壳,选择其高折射率和低消光系数,实现精确的光控制,同时最大限度地减少光学损耗。建立了基于三维有限元法(FEM)的光电模型,分析了未修饰和TiN/ sio2集成的PSCs的光学和电学特性。结果表明,功率转换效率(PCE)与纳米颗粒尺寸之间存在很强的相关性。加入90 nm纳米颗粒后,PCE从12.9%提高到17.3%,而115 nm纳米颗粒的PCE达到了令人印象深刻的26.7%,提高了97.3%。这些发现强调了定制等离子体纳米结构在最大化光吸收和能量转换方面的关键作用。该研究促进了对等离子体纳米材料在光伏领域的理解,并为提高无铅等离子体纳米材料的效率提供了可行的策略。TiN/SiO2纳米颗粒的集成为开发高性能、可持续的太阳能技术提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

TiN/SiO2 core–shell refractory plasmonic nanostructures unlock unprecedented 26.7% power conversion efficiency in Pb-free perovskite solar cells

TiN/SiO2 core–shell refractory plasmonic nanostructures unlock unprecedented 26.7% power conversion efficiency in Pb-free perovskite solar cells

TiN/SiO2 core–shell refractory plasmonic nanoparticles have been utilized as highly efficient nanoantennas to enhance the performance of lead-free perovskite solar cells (PSCs). The SiO2 shell, selected for its high refractive index and low extinction coefficient, enables precise light control while minimizing optical losses. A 3D finite element method (FEM)-based optoelectronic model was developed to analyze the optical and electrical characteristics of both unmodified and TiN/SiO2-integrated PSCs. The results demonstrate a strong correlation between power conversion efficiency (PCE) and nanoparticle size. Incorporating 90 nm nanoparticles increases the PCE from 12.9% to 17.3%, while 115 nm nanoparticles achieve an impressive 26.7%, marking a 97.3% improvement. These findings highlight the pivotal role of tailored plasmonic nanostructures in maximizing light absorption and energy conversion. This study advances the understanding of plasmonic nanomaterials in photovoltaics and offers a viable strategy for enhancing the efficiency of lead-free PSCs. The integration of TiN/SiO2 nanoparticles presents a promising pathway for developing high-performance, sustainable solar technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信