Fatima Lois Suarez, Yi-Lin Chen, Ray Hsienho Chang, Yan-Tsung Peng, Changjie Cai
{"title":"通过数据增强改进火灾场景中的AI目标检测。","authors":"Fatima Lois Suarez, Yi-Lin Chen, Ray Hsienho Chang, Yan-Tsung Peng, Changjie Cai","doi":"10.1080/15459624.2025.2499600","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial Intelligence (AI) has been widely used to facilitate disaster response. By connecting cameras to AI software, it can help determine the number of firefighters and apparatus, enhancing efficiency on the fireground. However, we must overcome several challenges to effectively utilize AI in firefighting. One challenge is improving the brightness and resolution of pictures and videos taken at fire scenes. This study examines the impacts of two image enhancement methods, Contrast-Limited Adaptive Histogram Equalization (CLAHE) and Zero-reference Deep Curve Estimation (Zero-DCE), on the accuracy of the AI-based object detector trained using images taken on various fire scenes. The results indicate that, after augmenting the training data with image enhancement techniques, the detector can accurately identify firefighters with a precision of 0.827 and firetrucks with a precision of 0.945. Enhancing the dataset's variety through these techniques improves the model's generalizability, provided that the test images are also enhanced to augment visual quality. Specifically, applying CLAHE during training increased the mean average precision (mAP) value by 8% and the recall by 7% from the baseline. Meanwhile, the integration of Zero-DCE demonstrated particular efficacy in recognizing firetrucks in low-light conditions, achieving the highest precision value of 0.945 among all the cases considered. This paper will benefit future applications of AI in fireground operations. Additionally, we provide directions for future researchers to advance AI recognition research in facilitating disaster response activities and fireground operations.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"1-10"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving AI object detection in fire scenes through data augmentation.\",\"authors\":\"Fatima Lois Suarez, Yi-Lin Chen, Ray Hsienho Chang, Yan-Tsung Peng, Changjie Cai\",\"doi\":\"10.1080/15459624.2025.2499600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial Intelligence (AI) has been widely used to facilitate disaster response. By connecting cameras to AI software, it can help determine the number of firefighters and apparatus, enhancing efficiency on the fireground. However, we must overcome several challenges to effectively utilize AI in firefighting. One challenge is improving the brightness and resolution of pictures and videos taken at fire scenes. This study examines the impacts of two image enhancement methods, Contrast-Limited Adaptive Histogram Equalization (CLAHE) and Zero-reference Deep Curve Estimation (Zero-DCE), on the accuracy of the AI-based object detector trained using images taken on various fire scenes. The results indicate that, after augmenting the training data with image enhancement techniques, the detector can accurately identify firefighters with a precision of 0.827 and firetrucks with a precision of 0.945. Enhancing the dataset's variety through these techniques improves the model's generalizability, provided that the test images are also enhanced to augment visual quality. Specifically, applying CLAHE during training increased the mean average precision (mAP) value by 8% and the recall by 7% from the baseline. Meanwhile, the integration of Zero-DCE demonstrated particular efficacy in recognizing firetrucks in low-light conditions, achieving the highest precision value of 0.945 among all the cases considered. This paper will benefit future applications of AI in fireground operations. Additionally, we provide directions for future researchers to advance AI recognition research in facilitating disaster response activities and fireground operations.</p>\",\"PeriodicalId\":16599,\"journal\":{\"name\":\"Journal of Occupational and Environmental Hygiene\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Occupational and Environmental Hygiene\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15459624.2025.2499600\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Occupational and Environmental Hygiene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15459624.2025.2499600","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Improving AI object detection in fire scenes through data augmentation.
Artificial Intelligence (AI) has been widely used to facilitate disaster response. By connecting cameras to AI software, it can help determine the number of firefighters and apparatus, enhancing efficiency on the fireground. However, we must overcome several challenges to effectively utilize AI in firefighting. One challenge is improving the brightness and resolution of pictures and videos taken at fire scenes. This study examines the impacts of two image enhancement methods, Contrast-Limited Adaptive Histogram Equalization (CLAHE) and Zero-reference Deep Curve Estimation (Zero-DCE), on the accuracy of the AI-based object detector trained using images taken on various fire scenes. The results indicate that, after augmenting the training data with image enhancement techniques, the detector can accurately identify firefighters with a precision of 0.827 and firetrucks with a precision of 0.945. Enhancing the dataset's variety through these techniques improves the model's generalizability, provided that the test images are also enhanced to augment visual quality. Specifically, applying CLAHE during training increased the mean average precision (mAP) value by 8% and the recall by 7% from the baseline. Meanwhile, the integration of Zero-DCE demonstrated particular efficacy in recognizing firetrucks in low-light conditions, achieving the highest precision value of 0.945 among all the cases considered. This paper will benefit future applications of AI in fireground operations. Additionally, we provide directions for future researchers to advance AI recognition research in facilitating disaster response activities and fireground operations.
期刊介绍:
The Journal of Occupational and Environmental Hygiene ( JOEH ) is a joint publication of the American Industrial Hygiene Association (AIHA®) and ACGIH®. The JOEH is a peer-reviewed journal devoted to enhancing the knowledge and practice of occupational and environmental hygiene and safety by widely disseminating research articles and applied studies of the highest quality.
The JOEH provides a written medium for the communication of ideas, methods, processes, and research in core and emerging areas of occupational and environmental hygiene. Core domains include, but are not limited to: exposure assessment, control strategies, ergonomics, and risk analysis. Emerging domains include, but are not limited to: sensor technology, emergency preparedness and response, changing workforce, and management and analysis of "big" data.