Corazonin介导豆虫光周期诱导的滞育。

IF 2.8 2区 生物学 Q2 BIOLOGY
Jili Xi, Yoshitaka Hamanaka, Sakiko Shiga
{"title":"Corazonin介导豆虫光周期诱导的滞育。","authors":"Jili Xi, Yoshitaka Hamanaka, Sakiko Shiga","doi":"10.1242/jeb.250528","DOIUrl":null,"url":null,"abstract":"<p><p>Insects in mid- to high latitudes predict unfavorable seasons through changing photoperiod, and undergo diapause to survive harsh conditions. The circadian clock and brain neurosecretory systems are key components in regulating photoperiodic diapause. However, the neuronal pathways linking these systems, and the neuropeptides involved in photoperiodic diapause remain poorly understood. We have investigated the role of corazonin (CRZ), a conserved neuropeptide regulating metabolic stress and reproduction, in the bean bug Riptortus pedestris, a species highly sensitive to short days for diapause induction. RNA interference demonstrated that Crz-downregulated females significantly averted diapausing phenotypes even under short-day conditions, exhibiting developed ovaries and oviposition, indicating the suppressive effects of Crz on reproduction in photoperiodic diapause. Immunohistochemistry identified three distinct groups of CRZ-immunoreactive (-ir) neurons in the brain. Of these, CRZ-d cells in the pars lateralis (PL) project axons toward the corpus cardiacum-corpus allatum complex and aorta, indicating a neurosecretory role in diapause induction. Additionally, we revealed potential neural connections between CRZ-ir and pigment-dispersing factor (PDF)-ir neurons in the dorso-lateral protocerebrum. The PDF-ir neurons project neurites into/near the accessory medulla (AME), a probable hub for circadian clock regulation, suggesting that photoperiodic information processed in the AME is relayed to CRZ-ir PL neurons. PCR detected Crz receptor expression in the fat body and ovary, suggesting that CRZ-d PL neurons regulate reproductive diapause by directly targeting these tissues in response to photoperiodic inputs. These findings illuminate the neuroendocrine mechanisms underlying photoperiodic reproductive diapause in R. pedestris, highlighting the suppressive role of CRZ under short-day conditions.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corazonin mediates photoperiodically-induced diapause in the bean bug Riptortus pedestris.\",\"authors\":\"Jili Xi, Yoshitaka Hamanaka, Sakiko Shiga\",\"doi\":\"10.1242/jeb.250528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insects in mid- to high latitudes predict unfavorable seasons through changing photoperiod, and undergo diapause to survive harsh conditions. The circadian clock and brain neurosecretory systems are key components in regulating photoperiodic diapause. However, the neuronal pathways linking these systems, and the neuropeptides involved in photoperiodic diapause remain poorly understood. We have investigated the role of corazonin (CRZ), a conserved neuropeptide regulating metabolic stress and reproduction, in the bean bug Riptortus pedestris, a species highly sensitive to short days for diapause induction. RNA interference demonstrated that Crz-downregulated females significantly averted diapausing phenotypes even under short-day conditions, exhibiting developed ovaries and oviposition, indicating the suppressive effects of Crz on reproduction in photoperiodic diapause. Immunohistochemistry identified three distinct groups of CRZ-immunoreactive (-ir) neurons in the brain. Of these, CRZ-d cells in the pars lateralis (PL) project axons toward the corpus cardiacum-corpus allatum complex and aorta, indicating a neurosecretory role in diapause induction. Additionally, we revealed potential neural connections between CRZ-ir and pigment-dispersing factor (PDF)-ir neurons in the dorso-lateral protocerebrum. The PDF-ir neurons project neurites into/near the accessory medulla (AME), a probable hub for circadian clock regulation, suggesting that photoperiodic information processed in the AME is relayed to CRZ-ir PL neurons. PCR detected Crz receptor expression in the fat body and ovary, suggesting that CRZ-d PL neurons regulate reproductive diapause by directly targeting these tissues in response to photoperiodic inputs. These findings illuminate the neuroendocrine mechanisms underlying photoperiodic reproductive diapause in R. pedestris, highlighting the suppressive role of CRZ under short-day conditions.</p>\",\"PeriodicalId\":15786,\"journal\":{\"name\":\"Journal of Experimental Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jeb.250528\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.250528","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

中高纬度地区的昆虫通过光周期的变化来预测不利的季节,并通过滞育来生存恶劣的环境。生物钟和脑神经分泌系统是调控光周期滞育的关键组成部分。然而,连接这些系统的神经通路以及参与光周期滞育的神经肽仍然知之甚少。我们研究了corazonin (CRZ)在豆虫(Riptortus pestris)中的作用,这是一种保守的神经肽,可以调节代谢应激和繁殖,Riptortus pestris是一种对短时间滞育诱导高度敏感的物种。RNA干扰表明,即使在短日照条件下,Crz下调的雌性也能显著避免滞育表型,表现出发达的卵巢和产卵,表明Crz对光周期滞育繁殖的抑制作用。免疫组织化学鉴定出脑内三组不同的crz免疫反应(-ir)神经元。其中,侧部(PL)的CRZ-d细胞将轴突投射到心体-异形体复合体和主动脉,表明其在滞育诱导中具有神经分泌作用。此外,我们还揭示了CRZ-ir和色素分散因子(PDF)-ir神经元之间潜在的神经连接。PDF-ir神经元将神经突起投射到副髓质(AME)附近,副髓质可能是生物钟调节的中枢,这表明在AME处理的光周期信息被传递给CRZ-ir PL神经元。PCR检测到Crz受体在脂肪体和卵巢中的表达,提示Crz -d PL神经元响应光周期输入,直接靶向这些组织调节生殖滞育。这些发现阐明了黄颡鱼光周期生殖滞育的神经内分泌机制,强调了短日照条件下CRZ的抑制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corazonin mediates photoperiodically-induced diapause in the bean bug Riptortus pedestris.

Insects in mid- to high latitudes predict unfavorable seasons through changing photoperiod, and undergo diapause to survive harsh conditions. The circadian clock and brain neurosecretory systems are key components in regulating photoperiodic diapause. However, the neuronal pathways linking these systems, and the neuropeptides involved in photoperiodic diapause remain poorly understood. We have investigated the role of corazonin (CRZ), a conserved neuropeptide regulating metabolic stress and reproduction, in the bean bug Riptortus pedestris, a species highly sensitive to short days for diapause induction. RNA interference demonstrated that Crz-downregulated females significantly averted diapausing phenotypes even under short-day conditions, exhibiting developed ovaries and oviposition, indicating the suppressive effects of Crz on reproduction in photoperiodic diapause. Immunohistochemistry identified three distinct groups of CRZ-immunoreactive (-ir) neurons in the brain. Of these, CRZ-d cells in the pars lateralis (PL) project axons toward the corpus cardiacum-corpus allatum complex and aorta, indicating a neurosecretory role in diapause induction. Additionally, we revealed potential neural connections between CRZ-ir and pigment-dispersing factor (PDF)-ir neurons in the dorso-lateral protocerebrum. The PDF-ir neurons project neurites into/near the accessory medulla (AME), a probable hub for circadian clock regulation, suggesting that photoperiodic information processed in the AME is relayed to CRZ-ir PL neurons. PCR detected Crz receptor expression in the fat body and ovary, suggesting that CRZ-d PL neurons regulate reproductive diapause by directly targeting these tissues in response to photoperiodic inputs. These findings illuminate the neuroendocrine mechanisms underlying photoperiodic reproductive diapause in R. pedestris, highlighting the suppressive role of CRZ under short-day conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信