二硫桥介导环糊精接枝热/氧化还原双响应聚合物调控药物传递。

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Zhijia Yan, Xin Xu, Jinku Xu
{"title":"二硫桥介导环糊精接枝热/氧化还原双响应聚合物调控药物传递。","authors":"Zhijia Yan, Xin Xu, Jinku Xu","doi":"10.1080/09205063.2025.2506207","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor cells usually highly expressed reducing glutathione that can break out disulfide bond. In this article, a novel cyclodextrin-containing thermo/redox dual-responsive polymer, PNIPAM-SS-β-CD, was synthesized by copolymerization between monomers of N-isopropylacrylamide (NIPAM) and mono-methacrylated β-cyclodextrin mediated by disulfide bond (MA-SS-β-CD). The dual- responsive polymer has a weight-average molecular weight (M<sub>w</sub>) of 53.75 kDa with 45.5 wt% β-CD content, and the polymerization degree ratio of the two structural units form NIPAM and MA-SS-β-CD in the polymer is about 9.26. The polymer can dissolve in water to form hydrogel with a regulating phase transition temperature from 33 to 36 °C. Cytotoxicity assays and hemolysis tests respectively demonstrated over 95% cell viability and no significant hemolytic activity, indicating its superior biocompatibility. Curcumin was used as a model to evaluate drug loading and <i>in vitro</i> release behavior of the thermo/redox dual-responsive polymer. It was revealed that the copolymer (PNIPAM-SS-β-CD) shows a 5.5 folds higher loaded amount and a slower drug release over 24 h than that of poly(N-isopropylacrylamide) (PNIPAM). Notably, the polymer exhibited rapid drug release through disulfide bond cleavage in response to reduced glutathione (GSH, 3 mM), highlighting its potential for targeted cancer therapy.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-19"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclodextrin-grafted thermo/redox dual-responsive polymer mediated by disulfide bridges for regulated drug delivery.\",\"authors\":\"Zhijia Yan, Xin Xu, Jinku Xu\",\"doi\":\"10.1080/09205063.2025.2506207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumor cells usually highly expressed reducing glutathione that can break out disulfide bond. In this article, a novel cyclodextrin-containing thermo/redox dual-responsive polymer, PNIPAM-SS-β-CD, was synthesized by copolymerization between monomers of N-isopropylacrylamide (NIPAM) and mono-methacrylated β-cyclodextrin mediated by disulfide bond (MA-SS-β-CD). The dual- responsive polymer has a weight-average molecular weight (M<sub>w</sub>) of 53.75 kDa with 45.5 wt% β-CD content, and the polymerization degree ratio of the two structural units form NIPAM and MA-SS-β-CD in the polymer is about 9.26. The polymer can dissolve in water to form hydrogel with a regulating phase transition temperature from 33 to 36 °C. Cytotoxicity assays and hemolysis tests respectively demonstrated over 95% cell viability and no significant hemolytic activity, indicating its superior biocompatibility. Curcumin was used as a model to evaluate drug loading and <i>in vitro</i> release behavior of the thermo/redox dual-responsive polymer. It was revealed that the copolymer (PNIPAM-SS-β-CD) shows a 5.5 folds higher loaded amount and a slower drug release over 24 h than that of poly(N-isopropylacrylamide) (PNIPAM). Notably, the polymer exhibited rapid drug release through disulfide bond cleavage in response to reduced glutathione (GSH, 3 mM), highlighting its potential for targeted cancer therapy.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-19\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2025.2506207\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2506207","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤细胞通常高度表达可打破二硫键的还原性谷胱甘肽。本文以n-异丙基丙烯酰胺(NIPAM)单体和二硫键介导的单甲基丙烯酸化β-环糊精(MA-SS-β-CD)为共聚体,合成了一种新型含环糊精热/氧化还原双响应聚合物PNIPAM-SS-β-CD。双响应聚合物的重均分子量(Mw)为53.75 kDa, β-CD含量为45.5%,NIPAM和MA-SS-β-CD两个结构单元在聚合物中的聚合度比约为9.26。该聚合物可溶于水形成水凝胶,其调节相变温度为33 ~ 36℃。细胞毒性试验和溶血试验分别显示95%以上的细胞活力,无明显的溶血活性,表明其具有良好的生物相容性。以姜黄素为模型,考察了热/氧化还原双响应聚合物的载药量和体外释放行为。结果表明,该共聚物(PNIPAM- ss -β-CD)的载药量比聚n -异丙基丙烯酰胺(PNIPAM)高5.5倍,且在24 h内的释药速度较慢。值得注意的是,该聚合物在还原性谷胱甘肽(GSH, 3 mM)作用下,通过二硫键裂解快速释放药物,突出了其靶向癌症治疗的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclodextrin-grafted thermo/redox dual-responsive polymer mediated by disulfide bridges for regulated drug delivery.

Tumor cells usually highly expressed reducing glutathione that can break out disulfide bond. In this article, a novel cyclodextrin-containing thermo/redox dual-responsive polymer, PNIPAM-SS-β-CD, was synthesized by copolymerization between monomers of N-isopropylacrylamide (NIPAM) and mono-methacrylated β-cyclodextrin mediated by disulfide bond (MA-SS-β-CD). The dual- responsive polymer has a weight-average molecular weight (Mw) of 53.75 kDa with 45.5 wt% β-CD content, and the polymerization degree ratio of the two structural units form NIPAM and MA-SS-β-CD in the polymer is about 9.26. The polymer can dissolve in water to form hydrogel with a regulating phase transition temperature from 33 to 36 °C. Cytotoxicity assays and hemolysis tests respectively demonstrated over 95% cell viability and no significant hemolytic activity, indicating its superior biocompatibility. Curcumin was used as a model to evaluate drug loading and in vitro release behavior of the thermo/redox dual-responsive polymer. It was revealed that the copolymer (PNIPAM-SS-β-CD) shows a 5.5 folds higher loaded amount and a slower drug release over 24 h than that of poly(N-isopropylacrylamide) (PNIPAM). Notably, the polymer exhibited rapid drug release through disulfide bond cleavage in response to reduced glutathione (GSH, 3 mM), highlighting its potential for targeted cancer therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信