含绿茶海藻酸钠水凝胶治疗糖尿病大鼠模型溃疡的设计与评价。

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Pirasteh Norouzi, Nariman Rezaei Kolarijani, Naimeh Mahheidari, Arian Ehterami, Arindam Bit, Anneh Mohammad Gharravi, Seyed Meysam Yekesadat, Seyedeh Nazanin Aghayan, Saeed Haghi-Daredeh, Majid Salehi
{"title":"含绿茶海藻酸钠水凝胶治疗糖尿病大鼠模型溃疡的设计与评价。","authors":"Pirasteh Norouzi, Nariman Rezaei Kolarijani, Naimeh Mahheidari, Arian Ehterami, Arindam Bit, Anneh Mohammad Gharravi, Seyed Meysam Yekesadat, Seyedeh Nazanin Aghayan, Saeed Haghi-Daredeh, Majid Salehi","doi":"10.1177/08853282251345004","DOIUrl":null,"url":null,"abstract":"<p><p>A functional and biocompatible biomaterial is essential for accelerating the regeneration of skin tissue at the wound site. Hydrogel scaffolds in three dimensions show promising candidates for this purpose. This study was conducted to design a novel porous cross-linked alginate (Alg) hydrogel containing green tea (GT) and assess its morphology, swelling, weight loss, hemocompatibility, and cytocompatibility. Ultimately, the created hydrogel's therapeutic effectiveness was examined in a complete dermal diabetes wound model. The findings indicated that the hydrogel prepared had significant porosity, with interconnected pores around 75.821 µm in size. The weight loss evaluation indicated that the created hydrogel can be degraded naturally, with a weight loss ratio of about 74% for Alg/GT 80 mg after being incubated for 24 hours. Additionally, the study indicated that hydrogel dressings exhibited greater wound closure compared to gauze-treated wounds, which served as the control. The group with GT at a concentration of 80 mg showed the highest percentage of wound closure. The histopathological studies and IHC evaluation for TGF-β1 confirmed the in vivo finding. This study proposes utilizing 3D Alg hydrogels with GT as a wound dressing, but further studies are needed.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251345004"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and evaluation of sodium alginate-based hydrogel containing green tea for the treatment of diabetic ulcers in rat model.\",\"authors\":\"Pirasteh Norouzi, Nariman Rezaei Kolarijani, Naimeh Mahheidari, Arian Ehterami, Arindam Bit, Anneh Mohammad Gharravi, Seyed Meysam Yekesadat, Seyedeh Nazanin Aghayan, Saeed Haghi-Daredeh, Majid Salehi\",\"doi\":\"10.1177/08853282251345004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A functional and biocompatible biomaterial is essential for accelerating the regeneration of skin tissue at the wound site. Hydrogel scaffolds in three dimensions show promising candidates for this purpose. This study was conducted to design a novel porous cross-linked alginate (Alg) hydrogel containing green tea (GT) and assess its morphology, swelling, weight loss, hemocompatibility, and cytocompatibility. Ultimately, the created hydrogel's therapeutic effectiveness was examined in a complete dermal diabetes wound model. The findings indicated that the hydrogel prepared had significant porosity, with interconnected pores around 75.821 µm in size. The weight loss evaluation indicated that the created hydrogel can be degraded naturally, with a weight loss ratio of about 74% for Alg/GT 80 mg after being incubated for 24 hours. Additionally, the study indicated that hydrogel dressings exhibited greater wound closure compared to gauze-treated wounds, which served as the control. The group with GT at a concentration of 80 mg showed the highest percentage of wound closure. The histopathological studies and IHC evaluation for TGF-β1 confirmed the in vivo finding. This study proposes utilizing 3D Alg hydrogels with GT as a wound dressing, but further studies are needed.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"8853282251345004\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282251345004\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251345004","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

功能性和生物相容性的生物材料对于加速伤口部位皮肤组织的再生至关重要。三维水凝胶支架在这方面表现出很好的候选材料。本研究设计了一种新型的含有绿茶(GT)的多孔交联藻酸盐(Alg)水凝胶,并对其形态、肿胀、减肥、血液相容性和细胞相容性进行了评估。最后,在一个完整的皮肤糖尿病伤口模型中检查了所创建的水凝胶的治疗效果。结果表明,制备的水凝胶具有明显的孔隙率,孔隙大小在75.821µm左右。失重评价表明,制备的水凝胶可以自然降解,Alg/GT 80 mg在孵育24小时后失重率约为74%。此外,研究表明,与纱布处理的伤口相比,水凝胶敷料表现出更好的伤口愈合,纱布作为对照。GT浓度为80 mg组伤口愈合率最高。TGF-β1的组织病理学研究和免疫组化评价证实了体内的发现。本研究提出将3D Alg水凝胶与GT作为伤口敷料,但需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and evaluation of sodium alginate-based hydrogel containing green tea for the treatment of diabetic ulcers in rat model.

A functional and biocompatible biomaterial is essential for accelerating the regeneration of skin tissue at the wound site. Hydrogel scaffolds in three dimensions show promising candidates for this purpose. This study was conducted to design a novel porous cross-linked alginate (Alg) hydrogel containing green tea (GT) and assess its morphology, swelling, weight loss, hemocompatibility, and cytocompatibility. Ultimately, the created hydrogel's therapeutic effectiveness was examined in a complete dermal diabetes wound model. The findings indicated that the hydrogel prepared had significant porosity, with interconnected pores around 75.821 µm in size. The weight loss evaluation indicated that the created hydrogel can be degraded naturally, with a weight loss ratio of about 74% for Alg/GT 80 mg after being incubated for 24 hours. Additionally, the study indicated that hydrogel dressings exhibited greater wound closure compared to gauze-treated wounds, which served as the control. The group with GT at a concentration of 80 mg showed the highest percentage of wound closure. The histopathological studies and IHC evaluation for TGF-β1 confirmed the in vivo finding. This study proposes utilizing 3D Alg hydrogels with GT as a wound dressing, but further studies are needed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信