Megan J Colwell, Stephen F Pernal, Robert W Currie
{"title":"蜜蜂(膜翅目:蜂科)病毒序列通过工蜂运输和雾化向蜂蜡的机械转移。","authors":"Megan J Colwell, Stephen F Pernal, Robert W Currie","doi":"10.1093/jisesa/ieaf037","DOIUrl":null,"url":null,"abstract":"<p><p>Honey bees (Apis mellifera L.) are of undeniable value to agriculture. However, increased mortality of honey bees, mostly due to winter losses associated with parasites and pathogens, have put strain on the apiculture industry. Advancing our knowledge of honey bee viruses and their interactions within the colony environment is vital in mitigating their effect on honey bee health. Our study examined virus sequences detected on beeswax sampled from empty colonies which died during the previous winter. Based on a cage study using virus-containing bees, we confirmed that the introduction of BQCV sequences to wax foundation was possible through workers walking on, and contacting, comb surfaces (worker traffic). Furthermore, we found that BQCV may aerosolize within an incubator to contaminate wax at detectable levels among independent cages. A second cage study explored the potential effects of virus aerosolization on transmission between groups of adult worker bees within cages, having no direct contact. This experiment did not support aerosol transmission between groups of bees in confined spaces. Further work on waxborne virus transmission within colony environments, and potential effects of aerosolization under a wider array of conditions, is crucial to broadening our knowledge of honey bee virus transmission. Our work also highlights potential dangers for beekeepers re-using equipment from dead colonies.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"25 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096080/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanical transfer of honey bee (Hymenoptera: Apidae) virus sequences to wax by worker traffic and aerosolization.\",\"authors\":\"Megan J Colwell, Stephen F Pernal, Robert W Currie\",\"doi\":\"10.1093/jisesa/ieaf037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Honey bees (Apis mellifera L.) are of undeniable value to agriculture. However, increased mortality of honey bees, mostly due to winter losses associated with parasites and pathogens, have put strain on the apiculture industry. Advancing our knowledge of honey bee viruses and their interactions within the colony environment is vital in mitigating their effect on honey bee health. Our study examined virus sequences detected on beeswax sampled from empty colonies which died during the previous winter. Based on a cage study using virus-containing bees, we confirmed that the introduction of BQCV sequences to wax foundation was possible through workers walking on, and contacting, comb surfaces (worker traffic). Furthermore, we found that BQCV may aerosolize within an incubator to contaminate wax at detectable levels among independent cages. A second cage study explored the potential effects of virus aerosolization on transmission between groups of adult worker bees within cages, having no direct contact. This experiment did not support aerosol transmission between groups of bees in confined spaces. Further work on waxborne virus transmission within colony environments, and potential effects of aerosolization under a wider array of conditions, is crucial to broadening our knowledge of honey bee virus transmission. Our work also highlights potential dangers for beekeepers re-using equipment from dead colonies.</p>\",\"PeriodicalId\":16156,\"journal\":{\"name\":\"Journal of Insect Science\",\"volume\":\"25 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096080/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jisesa/ieaf037\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieaf037","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Mechanical transfer of honey bee (Hymenoptera: Apidae) virus sequences to wax by worker traffic and aerosolization.
Honey bees (Apis mellifera L.) are of undeniable value to agriculture. However, increased mortality of honey bees, mostly due to winter losses associated with parasites and pathogens, have put strain on the apiculture industry. Advancing our knowledge of honey bee viruses and their interactions within the colony environment is vital in mitigating their effect on honey bee health. Our study examined virus sequences detected on beeswax sampled from empty colonies which died during the previous winter. Based on a cage study using virus-containing bees, we confirmed that the introduction of BQCV sequences to wax foundation was possible through workers walking on, and contacting, comb surfaces (worker traffic). Furthermore, we found that BQCV may aerosolize within an incubator to contaminate wax at detectable levels among independent cages. A second cage study explored the potential effects of virus aerosolization on transmission between groups of adult worker bees within cages, having no direct contact. This experiment did not support aerosol transmission between groups of bees in confined spaces. Further work on waxborne virus transmission within colony environments, and potential effects of aerosolization under a wider array of conditions, is crucial to broadening our knowledge of honey bee virus transmission. Our work also highlights potential dangers for beekeepers re-using equipment from dead colonies.
期刊介绍:
The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.