Yarong Yan , Shulei Xing , Jinghua Liu , Xinlin Yan , Yi Guan , Zhixin Jiang , Wei Zhang , Xuan Li
{"title":"枸杞糖肽通过调节NF-κB/NLRP3/IL-1 β信号通路和microRNA-21a-5p/SMAD7减少角膜损伤的炎症和纤维化。","authors":"Yarong Yan , Shulei Xing , Jinghua Liu , Xinlin Yan , Yi Guan , Zhixin Jiang , Wei Zhang , Xuan Li","doi":"10.1016/j.exer.2025.110438","DOIUrl":null,"url":null,"abstract":"<div><div>Lycium barbarum glycopeptide (LbGp), derived from the Chinese medicinal plant Lycium barbarum, has demonstrated anti-inflammatory properties; however, its precise role and mechanism in corneal repair following injury remain elusive. The present research investigated the mechanisms and effects of LbGp on corneal repair following alkali burn injury using in vivo mouse models of corneal alkali burn and in vitro human keratocyte fibrosis models. Corneal inflammation, opacity, and epithelial defects were assessed via a slit lamp microscope. Results showed that LbGp-treated mice exhibited reduced edema, accelerated re-epithelialization, and decreased corneal opacity compared to the phosphate-buffered saline (PBS)-treated controls. Proteomic analysis revealed altered proteins enriched in the extracellular matrix among the control, injury, and LbGp treatment groups. Moreover, LbGp significantly attenuated TGFβ-1-induced myofibroblasts transdifferentiation from keratocytes. Consistently, LbGp treatment inhibited the upregulation of fibrosis markers (αSMA, fibronectin, and collagen III) at both the protein and mRNA levels after corneal alkali burns. LbGp also effectively suppressed the activation of the NF-κB/NLRP3/IL-1β signaling pathway and neutrophil infiltration following corneal alkali burn injury. Additionally, miR-21 was upregulated in TGFβ-1-stimulated keratocytes and in the alkali-burned mouse cornea. LbGp decreased miR-21 expression, while increasing expression of its target, Smad7, thereby dampening the TGFβ/Smad2/3 signaling pathway. This research demonstrates that LbGp promotes corneal healing by inhibiting inflammation and fibrosis after alkali burns, suggesting its potential as a supplementary therapy for corneal injury repair.</div></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"257 ","pages":"Article 110438"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lycium barbarum glycopeptide reduces inflammation and fibrosis in corneal injury by modulating the NF-κB/NLRP3/IL-1 β signaling pathway and microRNA-21a-5p/SMAD7\",\"authors\":\"Yarong Yan , Shulei Xing , Jinghua Liu , Xinlin Yan , Yi Guan , Zhixin Jiang , Wei Zhang , Xuan Li\",\"doi\":\"10.1016/j.exer.2025.110438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lycium barbarum glycopeptide (LbGp), derived from the Chinese medicinal plant Lycium barbarum, has demonstrated anti-inflammatory properties; however, its precise role and mechanism in corneal repair following injury remain elusive. The present research investigated the mechanisms and effects of LbGp on corneal repair following alkali burn injury using in vivo mouse models of corneal alkali burn and in vitro human keratocyte fibrosis models. Corneal inflammation, opacity, and epithelial defects were assessed via a slit lamp microscope. Results showed that LbGp-treated mice exhibited reduced edema, accelerated re-epithelialization, and decreased corneal opacity compared to the phosphate-buffered saline (PBS)-treated controls. Proteomic analysis revealed altered proteins enriched in the extracellular matrix among the control, injury, and LbGp treatment groups. Moreover, LbGp significantly attenuated TGFβ-1-induced myofibroblasts transdifferentiation from keratocytes. Consistently, LbGp treatment inhibited the upregulation of fibrosis markers (αSMA, fibronectin, and collagen III) at both the protein and mRNA levels after corneal alkali burns. LbGp also effectively suppressed the activation of the NF-κB/NLRP3/IL-1β signaling pathway and neutrophil infiltration following corneal alkali burn injury. Additionally, miR-21 was upregulated in TGFβ-1-stimulated keratocytes and in the alkali-burned mouse cornea. LbGp decreased miR-21 expression, while increasing expression of its target, Smad7, thereby dampening the TGFβ/Smad2/3 signaling pathway. This research demonstrates that LbGp promotes corneal healing by inhibiting inflammation and fibrosis after alkali burns, suggesting its potential as a supplementary therapy for corneal injury repair.</div></div>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\"257 \",\"pages\":\"Article 110438\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001448352500209X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001448352500209X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Lycium barbarum glycopeptide reduces inflammation and fibrosis in corneal injury by modulating the NF-κB/NLRP3/IL-1 β signaling pathway and microRNA-21a-5p/SMAD7
Lycium barbarum glycopeptide (LbGp), derived from the Chinese medicinal plant Lycium barbarum, has demonstrated anti-inflammatory properties; however, its precise role and mechanism in corneal repair following injury remain elusive. The present research investigated the mechanisms and effects of LbGp on corneal repair following alkali burn injury using in vivo mouse models of corneal alkali burn and in vitro human keratocyte fibrosis models. Corneal inflammation, opacity, and epithelial defects were assessed via a slit lamp microscope. Results showed that LbGp-treated mice exhibited reduced edema, accelerated re-epithelialization, and decreased corneal opacity compared to the phosphate-buffered saline (PBS)-treated controls. Proteomic analysis revealed altered proteins enriched in the extracellular matrix among the control, injury, and LbGp treatment groups. Moreover, LbGp significantly attenuated TGFβ-1-induced myofibroblasts transdifferentiation from keratocytes. Consistently, LbGp treatment inhibited the upregulation of fibrosis markers (αSMA, fibronectin, and collagen III) at both the protein and mRNA levels after corneal alkali burns. LbGp also effectively suppressed the activation of the NF-κB/NLRP3/IL-1β signaling pathway and neutrophil infiltration following corneal alkali burn injury. Additionally, miR-21 was upregulated in TGFβ-1-stimulated keratocytes and in the alkali-burned mouse cornea. LbGp decreased miR-21 expression, while increasing expression of its target, Smad7, thereby dampening the TGFβ/Smad2/3 signaling pathway. This research demonstrates that LbGp promotes corneal healing by inhibiting inflammation and fibrosis after alkali burns, suggesting its potential as a supplementary therapy for corneal injury repair.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.