腺苷酸激酶特异性单体的结合机制。

IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Ibuki Nakamura, Hiroshi Amesaka, Satoshi Nagao, Naoki Orito, Shigeru Negi, Shun-Ichi Tanaka, Takashi Matsuo
{"title":"腺苷酸激酶特异性单体的结合机制。","authors":"Ibuki Nakamura, Hiroshi Amesaka, Satoshi Nagao, Naoki Orito, Shigeru Negi, Shun-Ichi Tanaka, Takashi Matsuo","doi":"10.1002/1873-3468.70076","DOIUrl":null,"url":null,"abstract":"<p><p>Monobodies are synthetic antibody-mimetic proteins that regulate enzyme functions through protein-protein interactions. In this study, we investigated the binding mechanisms of monobodies to adenylate kinase (Adk). Calorimetric and X-ray crystallographic analyses revealed that CL-1, a monobody specific for the CLOSED form of Adk, binds to the CORE domain of Adk in an enthalpy-driven manner, forming several hydrogen bonds and a cation-π interaction at the protein interface, without perturbing the Adk backbone. In contrast, OP-4, an OPEN-form-specific monobody, exhibited entropy-driven binding. <sup>1</sup>H-<sup>15</sup>N 2D nuclear magnetic resonance (NMR), <sup>31</sup>P-NMR, and calorimetric studies revealed conformational perturbations to Adk by OP-4, while substrate access remained intact. The different thermodynamic and structural effects between the monobodies highlight the diverse binding mechanisms among monobodies.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binding mechanism of adenylate kinase-specific monobodies.\",\"authors\":\"Ibuki Nakamura, Hiroshi Amesaka, Satoshi Nagao, Naoki Orito, Shigeru Negi, Shun-Ichi Tanaka, Takashi Matsuo\",\"doi\":\"10.1002/1873-3468.70076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monobodies are synthetic antibody-mimetic proteins that regulate enzyme functions through protein-protein interactions. In this study, we investigated the binding mechanisms of monobodies to adenylate kinase (Adk). Calorimetric and X-ray crystallographic analyses revealed that CL-1, a monobody specific for the CLOSED form of Adk, binds to the CORE domain of Adk in an enthalpy-driven manner, forming several hydrogen bonds and a cation-π interaction at the protein interface, without perturbing the Adk backbone. In contrast, OP-4, an OPEN-form-specific monobody, exhibited entropy-driven binding. <sup>1</sup>H-<sup>15</sup>N 2D nuclear magnetic resonance (NMR), <sup>31</sup>P-NMR, and calorimetric studies revealed conformational perturbations to Adk by OP-4, while substrate access remained intact. The different thermodynamic and structural effects between the monobodies highlight the diverse binding mechanisms among monobodies.</p>\",\"PeriodicalId\":12142,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.70076\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.70076","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

单体是合成的模拟抗体蛋白,通过蛋白与蛋白的相互作用调节酶的功能。在这项研究中,我们研究了单体与腺苷酸激酶(Adk)的结合机制。量热分析和x射线晶体学分析表明,cl1是Adk CLOSED形式特异性的单体,以焓驱动的方式与Adk的CORE结构域结合,在蛋白质界面形成几个氢键和阳离子-π相互作用,而不干扰Adk主链。相比之下,OP-4,一个开放形式特异性单体,表现出熵驱动的结合。h - 15n二维核磁共振(NMR)、31p核磁共振和量热研究显示OP-4对Adk的构象扰动,而底物接触保持不变。单体之间不同的热力学和结构效应凸显了单体之间不同的结合机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binding mechanism of adenylate kinase-specific monobodies.

Monobodies are synthetic antibody-mimetic proteins that regulate enzyme functions through protein-protein interactions. In this study, we investigated the binding mechanisms of monobodies to adenylate kinase (Adk). Calorimetric and X-ray crystallographic analyses revealed that CL-1, a monobody specific for the CLOSED form of Adk, binds to the CORE domain of Adk in an enthalpy-driven manner, forming several hydrogen bonds and a cation-π interaction at the protein interface, without perturbing the Adk backbone. In contrast, OP-4, an OPEN-form-specific monobody, exhibited entropy-driven binding. 1H-15N 2D nuclear magnetic resonance (NMR), 31P-NMR, and calorimetric studies revealed conformational perturbations to Adk by OP-4, while substrate access remained intact. The different thermodynamic and structural effects between the monobodies highlight the diverse binding mechanisms among monobodies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEBS Letters
FEBS Letters 生物-生化与分子生物学
CiteScore
7.00
自引率
2.90%
发文量
303
审稿时长
1.0 months
期刊介绍: FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信