{"title":"一种有效的睡眠循环交替模式阶段分类系统。","authors":"Megha Agarwal, Amit Singhal","doi":"10.1007/s11571-025-10261-x","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalogram (EEG) signals are a popular tool to analyze sleep patterns. Cyclic alternating patterns (CAP) can be observed in EEG signals during unconscious periods of sleep. Detailed study of CAP can help in early diagnosis of many sleep disorders. Firstly, the CAP cycles need to be segregated into their constituents, phase A and phase B periods. In this work, we develop an accurate and easy-to-implement system to distinguish between the two CAP phases. The EEG signals are denoised and divided into smaller segments for an easier processing. These segments are decomposed into different frequency sub-bands using zero-phase filtering. Thereafter, statistical features are extracted from the sub-band components, and significant features are selected using the Kruskal-Wallis test. We consider four different algorithms for classification, namely, k-nearest neighbour (kNN), support vector machine (SVM), bagged tree (BT) and neural network (NN). The classification results are compiled for the datasets that include healthy subjects and those suffering from insomnia. The BT classifier produces the best results for the combined balanced dataset, with 83.29% accuracy and 83.58% F-1 score. The proposed method is more accurate and efficient than the existing schemes and can be considered for widespread deployments in real-world scenarios.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"79"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089587/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient system for classifying cyclic alternating pattern phases in sleep.\",\"authors\":\"Megha Agarwal, Amit Singhal\",\"doi\":\"10.1007/s11571-025-10261-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electroencephalogram (EEG) signals are a popular tool to analyze sleep patterns. Cyclic alternating patterns (CAP) can be observed in EEG signals during unconscious periods of sleep. Detailed study of CAP can help in early diagnosis of many sleep disorders. Firstly, the CAP cycles need to be segregated into their constituents, phase A and phase B periods. In this work, we develop an accurate and easy-to-implement system to distinguish between the two CAP phases. The EEG signals are denoised and divided into smaller segments for an easier processing. These segments are decomposed into different frequency sub-bands using zero-phase filtering. Thereafter, statistical features are extracted from the sub-band components, and significant features are selected using the Kruskal-Wallis test. We consider four different algorithms for classification, namely, k-nearest neighbour (kNN), support vector machine (SVM), bagged tree (BT) and neural network (NN). The classification results are compiled for the datasets that include healthy subjects and those suffering from insomnia. The BT classifier produces the best results for the combined balanced dataset, with 83.29% accuracy and 83.58% F-1 score. The proposed method is more accurate and efficient than the existing schemes and can be considered for widespread deployments in real-world scenarios.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"79\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089587/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10261-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10261-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Efficient system for classifying cyclic alternating pattern phases in sleep.
Electroencephalogram (EEG) signals are a popular tool to analyze sleep patterns. Cyclic alternating patterns (CAP) can be observed in EEG signals during unconscious periods of sleep. Detailed study of CAP can help in early diagnosis of many sleep disorders. Firstly, the CAP cycles need to be segregated into their constituents, phase A and phase B periods. In this work, we develop an accurate and easy-to-implement system to distinguish between the two CAP phases. The EEG signals are denoised and divided into smaller segments for an easier processing. These segments are decomposed into different frequency sub-bands using zero-phase filtering. Thereafter, statistical features are extracted from the sub-band components, and significant features are selected using the Kruskal-Wallis test. We consider four different algorithms for classification, namely, k-nearest neighbour (kNN), support vector machine (SVM), bagged tree (BT) and neural network (NN). The classification results are compiled for the datasets that include healthy subjects and those suffering from insomnia. The BT classifier produces the best results for the combined balanced dataset, with 83.29% accuracy and 83.58% F-1 score. The proposed method is more accurate and efficient than the existing schemes and can be considered for widespread deployments in real-world scenarios.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.