{"title":"结构复值Hopfield神经网络动力学。","authors":"Rama Murthy Garimella, Marcos Eduardo Valle, Guilherme Vieira, Anil Rayala, Dileep Munugoti","doi":"10.1007/s11571-025-10257-7","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we explore the dynamics of structured complex-valued Hopfield neural networks (CvHNNs), which arise when the synaptic weight matrix possesses specific structural properties. We begin by analyzing CvHNNs with a Hermitian synaptic weight matrix and establish the existence of four-cycle dynamics in CvHNNs with skew-Hermitian weight matrices operating synchronously. Furthermore, we introduce two new classes of complex-valued matrices: braided Hermitian and braided skew-Hermitian matrices. We demonstrate that CvHNNs utilizing these matrix types exhibit cycles of length eight when operating in full parallel update mode. Finally, we conduct extensive computational experiments on synchronous CvHNNs, exploring other synaptic weight matrix structures. The findings provide a comprehensive overview of the dynamics of structured CvHNNs, offering insights that may contribute to developing improved associative memory models when integrated with suitable learning rules.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"74"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089572/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamics of structured complex-valued Hopfield neural networks.\",\"authors\":\"Rama Murthy Garimella, Marcos Eduardo Valle, Guilherme Vieira, Anil Rayala, Dileep Munugoti\",\"doi\":\"10.1007/s11571-025-10257-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we explore the dynamics of structured complex-valued Hopfield neural networks (CvHNNs), which arise when the synaptic weight matrix possesses specific structural properties. We begin by analyzing CvHNNs with a Hermitian synaptic weight matrix and establish the existence of four-cycle dynamics in CvHNNs with skew-Hermitian weight matrices operating synchronously. Furthermore, we introduce two new classes of complex-valued matrices: braided Hermitian and braided skew-Hermitian matrices. We demonstrate that CvHNNs utilizing these matrix types exhibit cycles of length eight when operating in full parallel update mode. Finally, we conduct extensive computational experiments on synchronous CvHNNs, exploring other synaptic weight matrix structures. The findings provide a comprehensive overview of the dynamics of structured CvHNNs, offering insights that may contribute to developing improved associative memory models when integrated with suitable learning rules.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"74\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089572/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10257-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10257-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Dynamics of structured complex-valued Hopfield neural networks.
In this paper, we explore the dynamics of structured complex-valued Hopfield neural networks (CvHNNs), which arise when the synaptic weight matrix possesses specific structural properties. We begin by analyzing CvHNNs with a Hermitian synaptic weight matrix and establish the existence of four-cycle dynamics in CvHNNs with skew-Hermitian weight matrices operating synchronously. Furthermore, we introduce two new classes of complex-valued matrices: braided Hermitian and braided skew-Hermitian matrices. We demonstrate that CvHNNs utilizing these matrix types exhibit cycles of length eight when operating in full parallel update mode. Finally, we conduct extensive computational experiments on synchronous CvHNNs, exploring other synaptic weight matrix structures. The findings provide a comprehensive overview of the dynamics of structured CvHNNs, offering insights that may contribute to developing improved associative memory models when integrated with suitable learning rules.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.