Isaac Byarugaba, Alice Nabatanzi, Emmanuel Muhumuza, Joseph Kyambadde
{"title":"重金属对乌干达坎帕拉地区Kawempe区贫民窟废水中大肠杆菌耐药性的影响:一个案例研究。","authors":"Isaac Byarugaba, Alice Nabatanzi, Emmanuel Muhumuza, Joseph Kyambadde","doi":"10.1186/s12866-025-04024-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Slum dwellers face significant infrastructure and public health challenges like poor housing and drainage, inadequate sanitation, and limited access to clean water, leading to increased disease transmission and resistance to antibiotic treatments. This study evaluated the impact of heavy metals on antibiotic resistance patterns of Escherichia coli in wastewater from slums of Bwaise II, Bwaise III, Kazo, and Makerere III in Kawempe division, Kampala.</p><p><strong>Methods: </strong>Levels of heavy metals (lead, mercury, cadmium, chromium, and arsenic) in wastewater were determined using inductively coupled plasma mass spectroscopy. Escherichia coli were isolated from wastewater using MacConkey agar and their susceptibility to 50 µl of stock antibiotics (tetracycline, amoxicillin, ceftriaxone at 30 µg/ml, and ciprofloxacin at 5 µg/ml) determined. The potential of heavy metals to induce antibiotic resistance in Escherichia coli was determined by culturing susceptible isolates in 200 µl of Luria-Bertina broth containing stock antibiotics (10 µl), or stock antibiotics (10 µl) and stock heavy metals (10 µl). Stock heavy metals were prepared from the average concentration of heavy metals detected in wastewater.</p><p><strong>Results: </strong>Detectable levels of heavy metals were reported in wastewater from Bwaise II, Kazo and Makerere III only. Lead, cadmium and arsenic, mercury and chromium, were highest in Bwaise II, Kazo, and Makerere III, respectively. The occurrence of Escherichia coli resistant to at least an antibiotic was 72.8% (169 of 232) and resistance to tetracycline, ceftriaxone, amoxicillin, and ciprofloxacin were 34.1%, 28.9%, 35.3%, and 34.5%, respectively. Study findings further revealed a positive correlation (R<sup>2</sup> = 0.371-0.985) between the presence of heavy metals in wastewater and antibiotic resistance patterns of Escherichia coli. Also, heavy metals; lead (77.41 µg/ml), mercury (1.44 µg/ml), and cadmium (10.21 µg/ml) significantly (p < 0.05) induced antibiotic resistance in susceptible Escherichia coli.</p><p><strong>Conclusion: </strong>Wastewater in Kawempe slums is polluted with heavy metals and high prevalence of antibiotic-resistant Escherichia coli. Inadequate infrastructure in slums facilitate discharge of wastewater polluted with heavy metals, which in turn play a role in increasing antibiotic resistance. There is need for proper wastewater management to contain the prevalence of antibiotic resistance.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"310"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093770/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of heavy metals on antibiotic resistance of Escherichia coli from slum wastewater in Kawempe division, Kampala district, Uganda: a case study.\",\"authors\":\"Isaac Byarugaba, Alice Nabatanzi, Emmanuel Muhumuza, Joseph Kyambadde\",\"doi\":\"10.1186/s12866-025-04024-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Slum dwellers face significant infrastructure and public health challenges like poor housing and drainage, inadequate sanitation, and limited access to clean water, leading to increased disease transmission and resistance to antibiotic treatments. This study evaluated the impact of heavy metals on antibiotic resistance patterns of Escherichia coli in wastewater from slums of Bwaise II, Bwaise III, Kazo, and Makerere III in Kawempe division, Kampala.</p><p><strong>Methods: </strong>Levels of heavy metals (lead, mercury, cadmium, chromium, and arsenic) in wastewater were determined using inductively coupled plasma mass spectroscopy. Escherichia coli were isolated from wastewater using MacConkey agar and their susceptibility to 50 µl of stock antibiotics (tetracycline, amoxicillin, ceftriaxone at 30 µg/ml, and ciprofloxacin at 5 µg/ml) determined. The potential of heavy metals to induce antibiotic resistance in Escherichia coli was determined by culturing susceptible isolates in 200 µl of Luria-Bertina broth containing stock antibiotics (10 µl), or stock antibiotics (10 µl) and stock heavy metals (10 µl). Stock heavy metals were prepared from the average concentration of heavy metals detected in wastewater.</p><p><strong>Results: </strong>Detectable levels of heavy metals were reported in wastewater from Bwaise II, Kazo and Makerere III only. Lead, cadmium and arsenic, mercury and chromium, were highest in Bwaise II, Kazo, and Makerere III, respectively. The occurrence of Escherichia coli resistant to at least an antibiotic was 72.8% (169 of 232) and resistance to tetracycline, ceftriaxone, amoxicillin, and ciprofloxacin were 34.1%, 28.9%, 35.3%, and 34.5%, respectively. Study findings further revealed a positive correlation (R<sup>2</sup> = 0.371-0.985) between the presence of heavy metals in wastewater and antibiotic resistance patterns of Escherichia coli. Also, heavy metals; lead (77.41 µg/ml), mercury (1.44 µg/ml), and cadmium (10.21 µg/ml) significantly (p < 0.05) induced antibiotic resistance in susceptible Escherichia coli.</p><p><strong>Conclusion: </strong>Wastewater in Kawempe slums is polluted with heavy metals and high prevalence of antibiotic-resistant Escherichia coli. Inadequate infrastructure in slums facilitate discharge of wastewater polluted with heavy metals, which in turn play a role in increasing antibiotic resistance. There is need for proper wastewater management to contain the prevalence of antibiotic resistance.</p>\",\"PeriodicalId\":9233,\"journal\":{\"name\":\"BMC Microbiology\",\"volume\":\"25 1\",\"pages\":\"310\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093770/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12866-025-04024-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-04024-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Impact of heavy metals on antibiotic resistance of Escherichia coli from slum wastewater in Kawempe division, Kampala district, Uganda: a case study.
Background: Slum dwellers face significant infrastructure and public health challenges like poor housing and drainage, inadequate sanitation, and limited access to clean water, leading to increased disease transmission and resistance to antibiotic treatments. This study evaluated the impact of heavy metals on antibiotic resistance patterns of Escherichia coli in wastewater from slums of Bwaise II, Bwaise III, Kazo, and Makerere III in Kawempe division, Kampala.
Methods: Levels of heavy metals (lead, mercury, cadmium, chromium, and arsenic) in wastewater were determined using inductively coupled plasma mass spectroscopy. Escherichia coli were isolated from wastewater using MacConkey agar and their susceptibility to 50 µl of stock antibiotics (tetracycline, amoxicillin, ceftriaxone at 30 µg/ml, and ciprofloxacin at 5 µg/ml) determined. The potential of heavy metals to induce antibiotic resistance in Escherichia coli was determined by culturing susceptible isolates in 200 µl of Luria-Bertina broth containing stock antibiotics (10 µl), or stock antibiotics (10 µl) and stock heavy metals (10 µl). Stock heavy metals were prepared from the average concentration of heavy metals detected in wastewater.
Results: Detectable levels of heavy metals were reported in wastewater from Bwaise II, Kazo and Makerere III only. Lead, cadmium and arsenic, mercury and chromium, were highest in Bwaise II, Kazo, and Makerere III, respectively. The occurrence of Escherichia coli resistant to at least an antibiotic was 72.8% (169 of 232) and resistance to tetracycline, ceftriaxone, amoxicillin, and ciprofloxacin were 34.1%, 28.9%, 35.3%, and 34.5%, respectively. Study findings further revealed a positive correlation (R2 = 0.371-0.985) between the presence of heavy metals in wastewater and antibiotic resistance patterns of Escherichia coli. Also, heavy metals; lead (77.41 µg/ml), mercury (1.44 µg/ml), and cadmium (10.21 µg/ml) significantly (p < 0.05) induced antibiotic resistance in susceptible Escherichia coli.
Conclusion: Wastewater in Kawempe slums is polluted with heavy metals and high prevalence of antibiotic-resistant Escherichia coli. Inadequate infrastructure in slums facilitate discharge of wastewater polluted with heavy metals, which in turn play a role in increasing antibiotic resistance. There is need for proper wastewater management to contain the prevalence of antibiotic resistance.
期刊介绍:
BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.