工程NADH氧化酶再生氧化非天然辅助因子。

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
ChemBioChem Pub Date : 2025-05-22 DOI:10.1002/cbic.202500254
Yeyu Liu, Xueying Wang, Yinghan Hu, Yanzhe Huang, Lingyun Zhang, Haizhao Xue, Yongjin J Zhou, Zongbao K Zhao
{"title":"工程NADH氧化酶再生氧化非天然辅助因子。","authors":"Yeyu Liu, Xueying Wang, Yinghan Hu, Yanzhe Huang, Lingyun Zhang, Haizhao Xue, Yongjin J Zhou, Zongbao K Zhao","doi":"10.1002/cbic.202500254","DOIUrl":null,"url":null,"abstract":"<p><p>Nicotinamide adenine dinucleotide (NAD<sup>+</sup>) and its reduced form NADH are universal redox cofactors, and thus manipulating NAD(H) supply often leads to unpredictable outcome because of metabolic crosstalk. To overcome intrinsic limitations associated to natural cofactors, this study previously introduces nicotinamide cytosine dinucleotide (NCD<sup>+</sup>) as a non-natural cofactor for redox biochemistry. While several enzymes have been devised to generate NCDH as driving force at the expense of cheap chemicals for reductive metabolic reactions, it remains inaccessible to generate NCD<sup>+</sup> for oxidative reactions. In this study, it engineers an H<sub>2</sub>O-forming NADH oxidase (EfNOX) from Enterococcus faecalis to favor NCDH. Compared to the wild-type enzyme, the best mutant NADH oxidase (NOX)-KRGT oxidizes NCDH with 14- and 107-fold higher catalytic efficiency and selectivity, respectively. Docking analysis shows that those mutations acquired a narrower cofactor binding cavity and positively charged environment contributing to the preference toward NCDH. Coupling NOX mutants with NCD-favoring phosphite dehydrogenase mutant enables Escherichia coli BW14329 to utilize phosphite as sole phosphorus source for growth. This work provides a traceless and effective tool to convert NCDH into NCD<sup>+</sup>, which should greatly expand our capacity in developing NCD-linked redox subsystems and further facilitate the implementation of non-natural cofactors in chemical biology and synthetic biology.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e2500254"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Nicotinamide Adenine Dinucleotide Oxidase for Regeneration of Oxidized Non-natural Cofactor.\",\"authors\":\"Yeyu Liu, Xueying Wang, Yinghan Hu, Yanzhe Huang, Lingyun Zhang, Haizhao Xue, Yongjin J Zhou, Zongbao K Zhao\",\"doi\":\"10.1002/cbic.202500254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nicotinamide adenine dinucleotide (NAD<sup>+</sup>) and its reduced form NADH are universal redox cofactors, and thus manipulating NAD(H) supply often leads to unpredictable outcome because of metabolic crosstalk. To overcome intrinsic limitations associated to natural cofactors, this study previously introduces nicotinamide cytosine dinucleotide (NCD<sup>+</sup>) as a non-natural cofactor for redox biochemistry. While several enzymes have been devised to generate NCDH as driving force at the expense of cheap chemicals for reductive metabolic reactions, it remains inaccessible to generate NCD<sup>+</sup> for oxidative reactions. In this study, it engineers an H<sub>2</sub>O-forming NADH oxidase (EfNOX) from Enterococcus faecalis to favor NCDH. Compared to the wild-type enzyme, the best mutant NADH oxidase (NOX)-KRGT oxidizes NCDH with 14- and 107-fold higher catalytic efficiency and selectivity, respectively. Docking analysis shows that those mutations acquired a narrower cofactor binding cavity and positively charged environment contributing to the preference toward NCDH. Coupling NOX mutants with NCD-favoring phosphite dehydrogenase mutant enables Escherichia coli BW14329 to utilize phosphite as sole phosphorus source for growth. This work provides a traceless and effective tool to convert NCDH into NCD<sup>+</sup>, which should greatly expand our capacity in developing NCD-linked redox subsystems and further facilitate the implementation of non-natural cofactors in chemical biology and synthetic biology.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\" \",\"pages\":\"e2500254\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202500254\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500254","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

烟酰胺腺嘌呤二核苷酸(NAD+)及其还原形式NADH是通用的氧化还原辅助因子,因此操纵NAD(H)的供应通常会导致代谢串扰导致不可预测的结果。为了克服与天然辅因子相关的内在局限性,我们之前引入了烟酰胺胞嘧啶二核苷酸(NCD+)作为氧化还原生物化学的非天然辅因子。虽然已经设计出几种酶来产生NCDH作为还原性代谢反应的驱动力,但在氧化反应中产生NCD+仍然是不可能的。在这项研究中,我们从粪肠球菌中设计了一种形成h2o的NADH氧化酶(EfNOX)来促进NCDH。与野生型酶相比,最佳突变体NOX-KRGT氧化NCDH的催化效率和选择性分别提高了14倍和107倍。对接分析表明,这些突变获得了更窄的辅因子结合腔和带正电的环境,有助于对NCDH的偏好。将NOX突变体与支持ncd的亚磷酸酯脱氢酶突变体耦合,使大肠杆菌BW14329能够利用亚磷酸酯作为唯一的磷源进行生长。我们的工作为将NCDH转化为NCD+提供了一种无迹且有效的工具,这将极大地扩展我们开发NCD相关氧化还原子系统的能力,并进一步促进非天然辅助因子在化学生物学和合成生物学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering Nicotinamide Adenine Dinucleotide Oxidase for Regeneration of Oxidized Non-natural Cofactor.

Nicotinamide adenine dinucleotide (NAD+) and its reduced form NADH are universal redox cofactors, and thus manipulating NAD(H) supply often leads to unpredictable outcome because of metabolic crosstalk. To overcome intrinsic limitations associated to natural cofactors, this study previously introduces nicotinamide cytosine dinucleotide (NCD+) as a non-natural cofactor for redox biochemistry. While several enzymes have been devised to generate NCDH as driving force at the expense of cheap chemicals for reductive metabolic reactions, it remains inaccessible to generate NCD+ for oxidative reactions. In this study, it engineers an H2O-forming NADH oxidase (EfNOX) from Enterococcus faecalis to favor NCDH. Compared to the wild-type enzyme, the best mutant NADH oxidase (NOX)-KRGT oxidizes NCDH with 14- and 107-fold higher catalytic efficiency and selectivity, respectively. Docking analysis shows that those mutations acquired a narrower cofactor binding cavity and positively charged environment contributing to the preference toward NCDH. Coupling NOX mutants with NCD-favoring phosphite dehydrogenase mutant enables Escherichia coli BW14329 to utilize phosphite as sole phosphorus source for growth. This work provides a traceless and effective tool to convert NCDH into NCD+, which should greatly expand our capacity in developing NCD-linked redox subsystems and further facilitate the implementation of non-natural cofactors in chemical biology and synthetic biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信