基于酞菁磷的NIR-II纳米颗粒用于血栓的光声成像和光热治疗。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhaoyang Liu, Yufeng Zhu, Yilan Jin, Rong Wang, Junjie Xia, Yingqiao Wang, Hong Yang, Changxin Shen, Shiping Yang, Zhiguo Zhou
{"title":"基于酞菁磷的NIR-II纳米颗粒用于血栓的光声成像和光热治疗。","authors":"Zhaoyang Liu, Yufeng Zhu, Yilan Jin, Rong Wang, Junjie Xia, Yingqiao Wang, Hong Yang, Changxin Shen, Shiping Yang, Zhiguo Zhou","doi":"10.1021/acsabm.5c00522","DOIUrl":null,"url":null,"abstract":"<p><p>A thrombus blocks blood flow, triggering life-threatening diseases like stroke. While drug therapy is the current main treatment, its bleeding side effects are problematic. Researchers are exploring nondrug thrombolysis methods, and photothermal therapy (PTT) offers a noninvasive approach with its unique benefits. However, PTT is usually not potent enough for complete thrombus eradication due to its low targeting ability. Herein, a targeted theranostic agent (S-PPc@ZnDPA) based on a phosphorus phthalocyanine (S-PPc) molecule was modified with phospholipids to enhance water solubility and loaded with the targeting molecule Zn(II)-bis(dipicolylamine) (ZnDPA). S-PPc@ZnDPA is capable of generating photoacoustic signals under 1064 nm light irradiation and has an efficient photothermal conversion efficiency (59.4%), making it a potential NIR-II absorbing nanoagent for integrated thrombosis diagnosis and treatment, as demonstrated by in vitro and in vivo experiments.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphorus Phthalocyanine-Based NIR-II Nanoparticles for Photoacoustic Imaging and Photothermal Therapy of Thrombus.\",\"authors\":\"Zhaoyang Liu, Yufeng Zhu, Yilan Jin, Rong Wang, Junjie Xia, Yingqiao Wang, Hong Yang, Changxin Shen, Shiping Yang, Zhiguo Zhou\",\"doi\":\"10.1021/acsabm.5c00522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A thrombus blocks blood flow, triggering life-threatening diseases like stroke. While drug therapy is the current main treatment, its bleeding side effects are problematic. Researchers are exploring nondrug thrombolysis methods, and photothermal therapy (PTT) offers a noninvasive approach with its unique benefits. However, PTT is usually not potent enough for complete thrombus eradication due to its low targeting ability. Herein, a targeted theranostic agent (S-PPc@ZnDPA) based on a phosphorus phthalocyanine (S-PPc) molecule was modified with phospholipids to enhance water solubility and loaded with the targeting molecule Zn(II)-bis(dipicolylamine) (ZnDPA). S-PPc@ZnDPA is capable of generating photoacoustic signals under 1064 nm light irradiation and has an efficient photothermal conversion efficiency (59.4%), making it a potential NIR-II absorbing nanoagent for integrated thrombosis diagnosis and treatment, as demonstrated by in vitro and in vivo experiments.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.5c00522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

血栓阻塞血液流动,引发中风等危及生命的疾病。虽然药物治疗是目前的主要治疗方法,但其出血副作用是一个问题。研究人员正在探索非药物溶栓方法,光热疗法(PTT)以其独特的优势提供了一种无创的方法。然而,由于PTT的靶向能力较低,它通常不足以完全根除血栓。本文用磷脂修饰了一种基于酞菁磷(S-PPc)分子的靶向治疗剂(S-PPc@ZnDPA),以提高水溶性,并装载了靶向分子Zn(II)-双(二聚胺)(ZnDPA)。S-PPc@ZnDPA能够在1064 nm光照射下产生光声信号,光热转换效率高达59.4%,体外和体内实验表明,它是一种潜在的NIR-II吸收纳米剂,可用于血栓形成的综合诊断和治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phosphorus Phthalocyanine-Based NIR-II Nanoparticles for Photoacoustic Imaging and Photothermal Therapy of Thrombus.

A thrombus blocks blood flow, triggering life-threatening diseases like stroke. While drug therapy is the current main treatment, its bleeding side effects are problematic. Researchers are exploring nondrug thrombolysis methods, and photothermal therapy (PTT) offers a noninvasive approach with its unique benefits. However, PTT is usually not potent enough for complete thrombus eradication due to its low targeting ability. Herein, a targeted theranostic agent (S-PPc@ZnDPA) based on a phosphorus phthalocyanine (S-PPc) molecule was modified with phospholipids to enhance water solubility and loaded with the targeting molecule Zn(II)-bis(dipicolylamine) (ZnDPA). S-PPc@ZnDPA is capable of generating photoacoustic signals under 1064 nm light irradiation and has an efficient photothermal conversion efficiency (59.4%), making it a potential NIR-II absorbing nanoagent for integrated thrombosis diagnosis and treatment, as demonstrated by in vitro and in vivo experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信