Jinpyeo Jeung, Inyeol Yun, Hyuk Park, Yoonyoung Chung
{"title":"高产量,高成本效益制造高纵横比聚酰亚胺微结构坚固的超疏水表面","authors":"Jinpyeo Jeung, Inyeol Yun, Hyuk Park, Yoonyoung Chung","doi":"10.1002/admi.202400839","DOIUrl":null,"url":null,"abstract":"<p>Superhydrophobic surfaces (SHS), with their exceptional water-repellent properties, have attracted great interest due to their versatile applications. The robustness of SHS has emerged as an essential issue for practical applications, as SHS are directly exposed to various harsh environments, such as continuous raindrop impact, corrosive media, and extreme temperatures. Polyimide (PI) is an ideal candidate for robust SHS due to its superior mechanical, thermal, and chemical properties. However, the low processability of PI in surface microstructuring has limited its application in SHS. In this study, a high-yield and cost-effective fabrication method for constructing high-aspect-ratio PI microstructures has been developed by controlling the template surface treatment, precursor molecular weight, and vacuum process. This approach achieves an exceptional yield rate of 99.8% and an aspect ratio of 10.7, enabling the construction of various microstructures. The SHS is demonstrated by fabricating microstructures on PI surfaces using the proposed method. The PI SHS exhibits a water contact angle of up to 162° and a roll-off angle of less than 9°. The water repellency withstands 100 tape peeling tests and remains stable after continuous exposure to temperatures up to 250 °C and various chemical reagents for 60 days, which presents excellent robustness against environmental factors.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400839","citationCount":"0","resultStr":"{\"title\":\"High-Yield, Cost-Effective Fabrication of High-Aspect-Ratio Polyimide Microstructures for Robust Superhydrophobic Surfaces\",\"authors\":\"Jinpyeo Jeung, Inyeol Yun, Hyuk Park, Yoonyoung Chung\",\"doi\":\"10.1002/admi.202400839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Superhydrophobic surfaces (SHS), with their exceptional water-repellent properties, have attracted great interest due to their versatile applications. The robustness of SHS has emerged as an essential issue for practical applications, as SHS are directly exposed to various harsh environments, such as continuous raindrop impact, corrosive media, and extreme temperatures. Polyimide (PI) is an ideal candidate for robust SHS due to its superior mechanical, thermal, and chemical properties. However, the low processability of PI in surface microstructuring has limited its application in SHS. In this study, a high-yield and cost-effective fabrication method for constructing high-aspect-ratio PI microstructures has been developed by controlling the template surface treatment, precursor molecular weight, and vacuum process. This approach achieves an exceptional yield rate of 99.8% and an aspect ratio of 10.7, enabling the construction of various microstructures. The SHS is demonstrated by fabricating microstructures on PI surfaces using the proposed method. The PI SHS exhibits a water contact angle of up to 162° and a roll-off angle of less than 9°. The water repellency withstands 100 tape peeling tests and remains stable after continuous exposure to temperatures up to 250 °C and various chemical reagents for 60 days, which presents excellent robustness against environmental factors.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400839\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400839\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400839","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
High-Yield, Cost-Effective Fabrication of High-Aspect-Ratio Polyimide Microstructures for Robust Superhydrophobic Surfaces
Superhydrophobic surfaces (SHS), with their exceptional water-repellent properties, have attracted great interest due to their versatile applications. The robustness of SHS has emerged as an essential issue for practical applications, as SHS are directly exposed to various harsh environments, such as continuous raindrop impact, corrosive media, and extreme temperatures. Polyimide (PI) is an ideal candidate for robust SHS due to its superior mechanical, thermal, and chemical properties. However, the low processability of PI in surface microstructuring has limited its application in SHS. In this study, a high-yield and cost-effective fabrication method for constructing high-aspect-ratio PI microstructures has been developed by controlling the template surface treatment, precursor molecular weight, and vacuum process. This approach achieves an exceptional yield rate of 99.8% and an aspect ratio of 10.7, enabling the construction of various microstructures. The SHS is demonstrated by fabricating microstructures on PI surfaces using the proposed method. The PI SHS exhibits a water contact angle of up to 162° and a roll-off angle of less than 9°. The water repellency withstands 100 tape peeling tests and remains stable after continuous exposure to temperatures up to 250 °C and various chemical reagents for 60 days, which presents excellent robustness against environmental factors.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.