{"title":"CNTF/EP折纸薄壁管的准静态压缩响应和能量吸收","authors":"Bowen Zhang, Chuanling Men, Ying Kong, Zhengqiang Lv, Changwei Li, Dongmei Hu","doi":"10.1002/admi.202400826","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the quasi-static compression response and energy absorption characteristics of origami-inspired thin-walled tubes fabricated from carbon nanotube film/epoxy (CNTF/EP). The quasi-static compression tests are performed on the origami tubes, square tubes, circular tubes, and thin-walled tubes made from other common materials for comparison, and key mechanical performance indicators, including initial peak force (PF), energy absorption (EA), specific energy absorption (SEA), mean crushing force (MCF), and crushing load efficiency (CLE), are evaluated. The deformation modes of the tubes during compression are observed and analyzed, revealing four typical patterns. Among them, there are both good deformation modes and bad deformation modes, which significantly affect the compressive performance of the thin-walled tube. Additionally, the effects of introducing creases at different positions on the quasi-static compression behavior are explored. Tests are conducted to verify the reusability of the thin-walled tubes. The origami tubes exhibited significant improvements in PF, SEA, and MCF after manual recovery and cyclic testing, indicating their potential for reusability. With excellent compressive energy absorption properties, foldability, and reusability, CNTF/EP origami thin-walled tubes are suitable for various impact mitigation applications.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400826","citationCount":"0","resultStr":"{\"title\":\"Quasi-Static Compression Response and Energy Absorption of CNTF/EP Origami Thin-Walled Tubes\",\"authors\":\"Bowen Zhang, Chuanling Men, Ying Kong, Zhengqiang Lv, Changwei Li, Dongmei Hu\",\"doi\":\"10.1002/admi.202400826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the quasi-static compression response and energy absorption characteristics of origami-inspired thin-walled tubes fabricated from carbon nanotube film/epoxy (CNTF/EP). The quasi-static compression tests are performed on the origami tubes, square tubes, circular tubes, and thin-walled tubes made from other common materials for comparison, and key mechanical performance indicators, including initial peak force (PF), energy absorption (EA), specific energy absorption (SEA), mean crushing force (MCF), and crushing load efficiency (CLE), are evaluated. The deformation modes of the tubes during compression are observed and analyzed, revealing four typical patterns. Among them, there are both good deformation modes and bad deformation modes, which significantly affect the compressive performance of the thin-walled tube. Additionally, the effects of introducing creases at different positions on the quasi-static compression behavior are explored. Tests are conducted to verify the reusability of the thin-walled tubes. The origami tubes exhibited significant improvements in PF, SEA, and MCF after manual recovery and cyclic testing, indicating their potential for reusability. With excellent compressive energy absorption properties, foldability, and reusability, CNTF/EP origami thin-walled tubes are suitable for various impact mitigation applications.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400826\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400826\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400826","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Quasi-Static Compression Response and Energy Absorption of CNTF/EP Origami Thin-Walled Tubes
This study investigates the quasi-static compression response and energy absorption characteristics of origami-inspired thin-walled tubes fabricated from carbon nanotube film/epoxy (CNTF/EP). The quasi-static compression tests are performed on the origami tubes, square tubes, circular tubes, and thin-walled tubes made from other common materials for comparison, and key mechanical performance indicators, including initial peak force (PF), energy absorption (EA), specific energy absorption (SEA), mean crushing force (MCF), and crushing load efficiency (CLE), are evaluated. The deformation modes of the tubes during compression are observed and analyzed, revealing four typical patterns. Among them, there are both good deformation modes and bad deformation modes, which significantly affect the compressive performance of the thin-walled tube. Additionally, the effects of introducing creases at different positions on the quasi-static compression behavior are explored. Tests are conducted to verify the reusability of the thin-walled tubes. The origami tubes exhibited significant improvements in PF, SEA, and MCF after manual recovery and cyclic testing, indicating their potential for reusability. With excellent compressive energy absorption properties, foldability, and reusability, CNTF/EP origami thin-walled tubes are suitable for various impact mitigation applications.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.