{"title":"具有高振荡奇异项的半线性问题的自由边界","authors":"Mark Allen, Dennis Kriventsov, Henrik Shahgholian","doi":"10.1112/jlms.70180","DOIUrl":null,"url":null,"abstract":"<p>We investigate general semilinear (obstacle-like) problems of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>u</mi>\n <mo>=</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\Delta u = f(u)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(u)$</annotation>\n </semantics></math> has a singularity/jump at <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mi>u</mi>\n <mo>=</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace u=0\\rbrace$</annotation>\n </semantics></math> giving rise to a free boundary. Unlike many works on such equations where <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is approximately homogeneous near <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mi>u</mi>\n <mo>=</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace u = 0\\rbrace$</annotation>\n </semantics></math>, we work under assumptions allowing for highly oscillatory behavior. We establish the <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$C^\\infty$</annotation>\n </semantics></math> regularity of the free boundary <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mo>{</mo>\n <mi>u</mi>\n <mo>></mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$\\partial \\lbrace u>0\\rbrace$</annotation>\n </semantics></math> at flat points. Our approach is to first establish that flat free boundaries are Lipschitz, using a comparison argument with the Kelvin transform. For higher regularity, we study the highly degenerate partial differential equations (PDE) satisfied by ratios of derivatives of <span></span><math>\n <semantics>\n <mi>u</mi>\n <annotation>$u$</annotation>\n </semantics></math>, using changes of variable and then the hodograph transform. Along the way, we prove and make use of new Caffarelli–Peral type <span></span><math>\n <semantics>\n <msup>\n <mi>W</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <annotation>$W^{1, p}$</annotation>\n </semantics></math> estimates for such degenerate equations. Much of our approach appears new even in the case of Alt–Phillips and classical obstacle problems.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 5","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70180","citationCount":"0","resultStr":"{\"title\":\"The free boundary for semilinear problems with highly oscillating singular terms\",\"authors\":\"Mark Allen, Dennis Kriventsov, Henrik Shahgholian\",\"doi\":\"10.1112/jlms.70180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate general semilinear (obstacle-like) problems of the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mi>u</mi>\\n <mo>=</mo>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>u</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\Delta u = f(u)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>u</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(u)$</annotation>\\n </semantics></math> has a singularity/jump at <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mi>u</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace u=0\\\\rbrace$</annotation>\\n </semantics></math> giving rise to a free boundary. Unlike many works on such equations where <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> is approximately homogeneous near <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mi>u</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace u = 0\\\\rbrace$</annotation>\\n </semantics></math>, we work under assumptions allowing for highly oscillatory behavior. We establish the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>$C^\\\\infty$</annotation>\\n </semantics></math> regularity of the free boundary <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>∂</mi>\\n <mo>{</mo>\\n <mi>u</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\partial \\\\lbrace u>0\\\\rbrace$</annotation>\\n </semantics></math> at flat points. Our approach is to first establish that flat free boundaries are Lipschitz, using a comparison argument with the Kelvin transform. For higher regularity, we study the highly degenerate partial differential equations (PDE) satisfied by ratios of derivatives of <span></span><math>\\n <semantics>\\n <mi>u</mi>\\n <annotation>$u$</annotation>\\n </semantics></math>, using changes of variable and then the hodograph transform. Along the way, we prove and make use of new Caffarelli–Peral type <span></span><math>\\n <semantics>\\n <msup>\\n <mi>W</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <annotation>$W^{1, p}$</annotation>\\n </semantics></math> estimates for such degenerate equations. Much of our approach appears new even in the case of Alt–Phillips and classical obstacle problems.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 5\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70180\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70180\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70180","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了形式为Δ u = f (u) $\Delta u = f(u)$的一般半线性(类障碍物)问题,其中f (u) $f(u)$在{u = 0}$\lbrace u=0\rbrace$处有一个奇点/跳跃,产生一个自由边界。不像许多关于这样的方程的工作,f $f$在{u = 0}$\lbrace u = 0\rbrace$附近近似齐次,我们在允许高度振荡行为的假设下工作。建立了自由边界∂u >的C∞$C^\infty$正则性;0{}$\partial \lbrace u>0\rbrace$在平点处。我们的方法是首先利用与开尔文变换的比较论证,建立平坦的自由边界是利普希茨的。对于具有较高正则性的高度退化偏微分方程(PDE),我们首先利用变量的变化,然后再用矢状变换来研究u $u$的导数比所满足的高度退化偏微分方程。在此过程中,我们证明并利用了这种退化方程的新的Caffarelli-Peral型w1, p $W^{1, p}$估计。我们的许多方法看起来都是新的,甚至在Alt-Phillips和经典障碍问题的例子中也是如此。
The free boundary for semilinear problems with highly oscillating singular terms
We investigate general semilinear (obstacle-like) problems of the form , where has a singularity/jump at giving rise to a free boundary. Unlike many works on such equations where is approximately homogeneous near , we work under assumptions allowing for highly oscillatory behavior. We establish the regularity of the free boundary at flat points. Our approach is to first establish that flat free boundaries are Lipschitz, using a comparison argument with the Kelvin transform. For higher regularity, we study the highly degenerate partial differential equations (PDE) satisfied by ratios of derivatives of , using changes of variable and then the hodograph transform. Along the way, we prove and make use of new Caffarelli–Peral type estimates for such degenerate equations. Much of our approach appears new even in the case of Alt–Phillips and classical obstacle problems.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.