具有高振荡奇异项的半线性问题的自由边界

IF 1.2 2区 数学 Q1 MATHEMATICS
Mark Allen, Dennis Kriventsov, Henrik Shahgholian
{"title":"具有高振荡奇异项的半线性问题的自由边界","authors":"Mark Allen,&nbsp;Dennis Kriventsov,&nbsp;Henrik Shahgholian","doi":"10.1112/jlms.70180","DOIUrl":null,"url":null,"abstract":"<p>We investigate general semilinear (obstacle-like) problems of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>u</mi>\n <mo>=</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\Delta u = f(u)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(u)$</annotation>\n </semantics></math> has a singularity/jump at <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mi>u</mi>\n <mo>=</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace u=0\\rbrace$</annotation>\n </semantics></math> giving rise to a free boundary. Unlike many works on such equations where <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is approximately homogeneous near <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mi>u</mi>\n <mo>=</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace u = 0\\rbrace$</annotation>\n </semantics></math>, we work under assumptions allowing for highly oscillatory behavior. We establish the <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$C^\\infty$</annotation>\n </semantics></math> regularity of the free boundary <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mo>{</mo>\n <mi>u</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$\\partial \\lbrace u&gt;0\\rbrace$</annotation>\n </semantics></math> at flat points. Our approach is to first establish that flat free boundaries are Lipschitz, using a comparison argument with the Kelvin transform. For higher regularity, we study the highly degenerate partial differential equations (PDE) satisfied by ratios of derivatives of <span></span><math>\n <semantics>\n <mi>u</mi>\n <annotation>$u$</annotation>\n </semantics></math>, using changes of variable and then the hodograph transform. Along the way, we prove and make use of new Caffarelli–Peral type <span></span><math>\n <semantics>\n <msup>\n <mi>W</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <annotation>$W^{1, p}$</annotation>\n </semantics></math> estimates for such degenerate equations. Much of our approach appears new even in the case of Alt–Phillips and classical obstacle problems.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 5","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70180","citationCount":"0","resultStr":"{\"title\":\"The free boundary for semilinear problems with highly oscillating singular terms\",\"authors\":\"Mark Allen,&nbsp;Dennis Kriventsov,&nbsp;Henrik Shahgholian\",\"doi\":\"10.1112/jlms.70180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate general semilinear (obstacle-like) problems of the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mi>u</mi>\\n <mo>=</mo>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>u</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\Delta u = f(u)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>u</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(u)$</annotation>\\n </semantics></math> has a singularity/jump at <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mi>u</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace u=0\\\\rbrace$</annotation>\\n </semantics></math> giving rise to a free boundary. Unlike many works on such equations where <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> is approximately homogeneous near <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mi>u</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace u = 0\\\\rbrace$</annotation>\\n </semantics></math>, we work under assumptions allowing for highly oscillatory behavior. We establish the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>$C^\\\\infty$</annotation>\\n </semantics></math> regularity of the free boundary <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>∂</mi>\\n <mo>{</mo>\\n <mi>u</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\partial \\\\lbrace u&gt;0\\\\rbrace$</annotation>\\n </semantics></math> at flat points. Our approach is to first establish that flat free boundaries are Lipschitz, using a comparison argument with the Kelvin transform. For higher regularity, we study the highly degenerate partial differential equations (PDE) satisfied by ratios of derivatives of <span></span><math>\\n <semantics>\\n <mi>u</mi>\\n <annotation>$u$</annotation>\\n </semantics></math>, using changes of variable and then the hodograph transform. Along the way, we prove and make use of new Caffarelli–Peral type <span></span><math>\\n <semantics>\\n <msup>\\n <mi>W</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <annotation>$W^{1, p}$</annotation>\\n </semantics></math> estimates for such degenerate equations. Much of our approach appears new even in the case of Alt–Phillips and classical obstacle problems.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 5\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70180\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70180\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70180","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了形式为Δ u = f (u) $\Delta u = f(u)$的一般半线性(类障碍物)问题,其中f (u) $f(u)$在{u = 0}$\lbrace u=0\rbrace$处有一个奇点/跳跃,产生一个自由边界。不像许多关于这样的方程的工作,f $f$在{u = 0}$\lbrace u = 0\rbrace$附近近似齐次,我们在允许高度振荡行为的假设下工作。建立了自由边界∂u >的C∞$C^\infty$正则性;0{}$\partial \lbrace u>0\rbrace$在平点处。我们的方法是首先利用与开尔文变换的比较论证,建立平坦的自由边界是利普希茨的。对于具有较高正则性的高度退化偏微分方程(PDE),我们首先利用变量的变化,然后再用矢状变换来研究u $u$的导数比所满足的高度退化偏微分方程。在此过程中,我们证明并利用了这种退化方程的新的Caffarelli-Peral型w1, p $W^{1, p}$估计。我们的许多方法看起来都是新的,甚至在Alt-Phillips和经典障碍问题的例子中也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The free boundary for semilinear problems with highly oscillating singular terms

We investigate general semilinear (obstacle-like) problems of the form Δ u = f ( u ) $\Delta u = f(u)$ , where f ( u ) $f(u)$ has a singularity/jump at { u = 0 } $\lbrace u=0\rbrace$ giving rise to a free boundary. Unlike many works on such equations where f $f$ is approximately homogeneous near { u = 0 } $\lbrace u = 0\rbrace$ , we work under assumptions allowing for highly oscillatory behavior. We establish the C $C^\infty$ regularity of the free boundary { u > 0 } $\partial \lbrace u>0\rbrace$ at flat points. Our approach is to first establish that flat free boundaries are Lipschitz, using a comparison argument with the Kelvin transform. For higher regularity, we study the highly degenerate partial differential equations (PDE) satisfied by ratios of derivatives of u $u$ , using changes of variable and then the hodograph transform. Along the way, we prove and make use of new Caffarelli–Peral type W 1 , p $W^{1, p}$ estimates for such degenerate equations. Much of our approach appears new even in the case of Alt–Phillips and classical obstacle problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信