R. R. Nelson, S. S. Kulawik, C. W. O’Dell, J. McDuffie, A. Eldering
{"title":"基于奇异值分解的OCO-2 X C o2 ${X}_{{\\mathbf{C}\\mathbf{O}}_{\\mathbf{2}}}$检索改进","authors":"R. R. Nelson, S. S. Kulawik, C. W. O’Dell, J. McDuffie, A. Eldering","doi":"10.1029/2024EA003975","DOIUrl":null,"url":null,"abstract":"<p>NASA's Orbiting Carbon Observatory-2 (OCO-2) has the goal of accurately estimating column-averaged dry-air mole fractions of carbon dioxide (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>X</mi>\n <msub>\n <mrow>\n <mi>C</mi>\n <mi>O</mi>\n </mrow>\n <mn>2</mn>\n </msub>\n </msub>\n </mrow>\n <annotation> ${X}_{{\\mathrm{C}\\mathrm{O}}_{\\mathrm{2}}}$</annotation>\n </semantics></math>). In order to fit the measured radiances, many parameters besides <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{\\mathrm{2}}$</annotation>\n </semantics></math> are included in the optimal estimation state vector, including atmospheric water vapor and temperature. The current operational <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>X</mi>\n <msub>\n <mrow>\n <mi>C</mi>\n <mi>O</mi>\n </mrow>\n <mn>2</mn>\n </msub>\n </msub>\n </mrow>\n <annotation> ${X}_{{\\mathrm{C}\\mathrm{O}}_{\\mathrm{2}}}$</annotation>\n </semantics></math> retrieval algorithm (v11) solves for a multiplicative scaling factor on an a priori water vapor profile and an additive offset on an a priori temperature profile. However, simulations have indicated that water vapor and temperature each have 1.5–3 degrees of freedom in the vertical column. This means that the retrieval is limited in its ability to fit the true profiles of temperature and water vapor. Here, we use singular value decomposition to determine the three most explanatory profile “shapes” of water vapor and temperature error, then retrieve a single scaling factor applied to each shape. We assess retrieval errors by comparing to the Total Carbon Column Observing Network (TCCON) and multiple atmospheric <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{\\mathrm{2}}$</annotation>\n </semantics></math> inverse models. We find that after applying quality filtering using Data Ordering Genetic Optimization and a custom bias correction, the scatter of the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>X</mi>\n <msub>\n <mrow>\n <mi>C</mi>\n <mi>O</mi>\n </mrow>\n <mn>2</mn>\n </msub>\n </msub>\n </mrow>\n <annotation> ${X}_{{\\mathrm{C}\\mathrm{O}}_{\\mathrm{2}}}$</annotation>\n </semantics></math> error versus TCCON is reduced from 1.02 to 1.01 ppm (2.3% reduction in variance) for land glint observations, 1.04 to 0.96 ppm (14.5% reduction in variance) for land nadir observations, and 0.68 to 0.66 ppm (4.7% reduction in variance) for ocean glint observations. We also see a small improvement in the agreement between OCO-2 <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>X</mi>\n <msub>\n <mrow>\n <mi>C</mi>\n <mi>O</mi>\n </mrow>\n <mn>2</mn>\n </msub>\n </msub>\n </mrow>\n <annotation> ${X}_{{\\mathrm{C}\\mathrm{O}}_{\\mathrm{2}}}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{\\mathrm{2}}$</annotation>\n </semantics></math> models over oceans and the Amazon.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003975","citationCount":"0","resultStr":"{\"title\":\"Improving OCO-2 \\n \\n \\n \\n X\\n \\n \\n C\\n O\\n \\n 2\\n \\n \\n \\n ${X}_{{\\\\mathbf{C}\\\\mathbf{O}}_{\\\\mathbf{2}}}$\\n Retrievals Through the Scaling of Singular Value Decomposition-Based Temperature and Water Vapor Profiles\",\"authors\":\"R. R. Nelson, S. S. Kulawik, C. W. O’Dell, J. McDuffie, A. Eldering\",\"doi\":\"10.1029/2024EA003975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>NASA's Orbiting Carbon Observatory-2 (OCO-2) has the goal of accurately estimating column-averaged dry-air mole fractions of carbon dioxide (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>X</mi>\\n <msub>\\n <mrow>\\n <mi>C</mi>\\n <mi>O</mi>\\n </mrow>\\n <mn>2</mn>\\n </msub>\\n </msub>\\n </mrow>\\n <annotation> ${X}_{{\\\\mathrm{C}\\\\mathrm{O}}_{\\\\mathrm{2}}}$</annotation>\\n </semantics></math>). In order to fit the measured radiances, many parameters besides <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{\\\\mathrm{2}}$</annotation>\\n </semantics></math> are included in the optimal estimation state vector, including atmospheric water vapor and temperature. The current operational <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>X</mi>\\n <msub>\\n <mrow>\\n <mi>C</mi>\\n <mi>O</mi>\\n </mrow>\\n <mn>2</mn>\\n </msub>\\n </msub>\\n </mrow>\\n <annotation> ${X}_{{\\\\mathrm{C}\\\\mathrm{O}}_{\\\\mathrm{2}}}$</annotation>\\n </semantics></math> retrieval algorithm (v11) solves for a multiplicative scaling factor on an a priori water vapor profile and an additive offset on an a priori temperature profile. However, simulations have indicated that water vapor and temperature each have 1.5–3 degrees of freedom in the vertical column. This means that the retrieval is limited in its ability to fit the true profiles of temperature and water vapor. Here, we use singular value decomposition to determine the three most explanatory profile “shapes” of water vapor and temperature error, then retrieve a single scaling factor applied to each shape. We assess retrieval errors by comparing to the Total Carbon Column Observing Network (TCCON) and multiple atmospheric <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{\\\\mathrm{2}}$</annotation>\\n </semantics></math> inverse models. We find that after applying quality filtering using Data Ordering Genetic Optimization and a custom bias correction, the scatter of the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>X</mi>\\n <msub>\\n <mrow>\\n <mi>C</mi>\\n <mi>O</mi>\\n </mrow>\\n <mn>2</mn>\\n </msub>\\n </msub>\\n </mrow>\\n <annotation> ${X}_{{\\\\mathrm{C}\\\\mathrm{O}}_{\\\\mathrm{2}}}$</annotation>\\n </semantics></math> error versus TCCON is reduced from 1.02 to 1.01 ppm (2.3% reduction in variance) for land glint observations, 1.04 to 0.96 ppm (14.5% reduction in variance) for land nadir observations, and 0.68 to 0.66 ppm (4.7% reduction in variance) for ocean glint observations. We also see a small improvement in the agreement between OCO-2 <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>X</mi>\\n <msub>\\n <mrow>\\n <mi>C</mi>\\n <mi>O</mi>\\n </mrow>\\n <mn>2</mn>\\n </msub>\\n </msub>\\n </mrow>\\n <annotation> ${X}_{{\\\\mathrm{C}\\\\mathrm{O}}_{\\\\mathrm{2}}}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{\\\\mathrm{2}}$</annotation>\\n </semantics></math> models over oceans and the Amazon.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":\"12 5\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003975\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003975\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003975","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
美国宇航局的轨道碳观测站-2 (OCO-2)的目标是准确估计柱平均干空气中二氧化碳的摩尔分数(xcco2)$ {X} _ {{\ mathrm C {} \ mathrm {O}} _ {\ mathrm {2 }}}$ ).为了拟合测得的辐射值,在最优估计状态向量中除了CO 2 ${\text{CO}}_{\ maththrm{2}}$之外,还包含了许多参数,包括大气水蒸气和温度。当前可操作的X C O 2 ${X}_{{\mathrm{C}\mathrm{O}}_{\mathrm{2}}}$检索算法(v11)解决了先验上的乘法缩放因子水汽廓线和先验温度廓线上的附加偏移量。然而,模拟表明水蒸气和温度在垂直柱中各有1.5-3个自由度。这意味着反演在拟合温度和水蒸气真实剖面的能力上是有限的。在这里,我们使用奇异值分解来确定水蒸气和温度误差的三种最具解释性的剖面“形状”,然后检索应用于每种形状的单一比例因子。我们通过比较总碳柱观测网络(TCCON)和多个大气CO 2 ${\text{CO}}_{\ maththrm{2}}$反演模型来评估反演误差。我们发现,在使用数据排序遗传优化和自定义偏差校正进行质量滤波后,土地的X CO 2 ${X}_{{\mathrm{C}\mathrm{O} _{\mathrm{2}}}$误差与TCCON的散射从1.02 ppm降低到1.01 ppm(方差降低2.3%)闪烁观测,陆地最低点观测1.04 ~ 0.96 PPM(方差减少14.5%),海洋闪烁观测0.68 ~ 0.66 PPM(方差减少4.7%)。我们还看到OCO-2 X C - O-2 ${X}_{\ mathm {C}\ mathm {O}}_{\ mathm{2}}}$和CO 2 ${\text{CO}}_{\ mathm{2}}$模型在海洋和亚马逊。
Improving OCO-2
X
C
O
2
${X}_{{\mathbf{C}\mathbf{O}}_{\mathbf{2}}}$
Retrievals Through the Scaling of Singular Value Decomposition-Based Temperature and Water Vapor Profiles
NASA's Orbiting Carbon Observatory-2 (OCO-2) has the goal of accurately estimating column-averaged dry-air mole fractions of carbon dioxide (). In order to fit the measured radiances, many parameters besides are included in the optimal estimation state vector, including atmospheric water vapor and temperature. The current operational retrieval algorithm (v11) solves for a multiplicative scaling factor on an a priori water vapor profile and an additive offset on an a priori temperature profile. However, simulations have indicated that water vapor and temperature each have 1.5–3 degrees of freedom in the vertical column. This means that the retrieval is limited in its ability to fit the true profiles of temperature and water vapor. Here, we use singular value decomposition to determine the three most explanatory profile “shapes” of water vapor and temperature error, then retrieve a single scaling factor applied to each shape. We assess retrieval errors by comparing to the Total Carbon Column Observing Network (TCCON) and multiple atmospheric inverse models. We find that after applying quality filtering using Data Ordering Genetic Optimization and a custom bias correction, the scatter of the error versus TCCON is reduced from 1.02 to 1.01 ppm (2.3% reduction in variance) for land glint observations, 1.04 to 0.96 ppm (14.5% reduction in variance) for land nadir observations, and 0.68 to 0.66 ppm (4.7% reduction in variance) for ocean glint observations. We also see a small improvement in the agreement between OCO-2 and models over oceans and the Amazon.
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.