基于mxene - ti3c2tx的神经形态计算:物理机制、性能增强和前沿计算

IF 26.6 1区 材料科学 Q1 Engineering
Kaiyang Wang, Shuhui Ren, Yunfang Jia, Xiaobing Yan, Lizhen Wang, Yubo Fan
{"title":"基于mxene - ti3c2tx的神经形态计算:物理机制、性能增强和前沿计算","authors":"Kaiyang Wang,&nbsp;Shuhui Ren,&nbsp;Yunfang Jia,&nbsp;Xiaobing Yan,&nbsp;Lizhen Wang,&nbsp;Yubo Fan","doi":"10.1007/s40820-025-01787-0","DOIUrl":null,"url":null,"abstract":"<div><p>Neuromorphic devices have shown great potential in simulating the function of biological neurons due to their efficient parallel information processing and low energy consumption. MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, an emerging two-dimensional material, stands out as an ideal candidate for fabricating neuromorphic devices. Its exceptional electrical performance and robust mechanical properties make it an ideal choice for this purpose. This review aims to uncover the advantages and properties of MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> in neuromorphic devices and to promote its further development. Firstly, we categorize several core physical mechanisms present in MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> neuromorphic devices and summarize in detail the reasons for their formation. Then, this work systematically summarizes and classifies advanced techniques for the three main optimization pathways of MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, such as doping engineering, interface engineering, and structural engineering. Significantly, this work highlights innovative applications of MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> neuromorphic devices in cutting-edge computing paradigms, particularly near-sensor computing and in-sensor computing. Finally, this review carefully compiles a table that integrates almost all research results involving MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> neuromorphic devices and discusses the challenges, development prospects, and feasibility of MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-based neuromorphic devices in practical applications, aiming to lay a solid theoretical foundation and provide technical support for further exploration and application of MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> in the field of neuromorphic devices. </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01787-0.pdf","citationCount":"0","resultStr":"{\"title\":\"MXene-Ti3C2Tx-Based Neuromorphic Computing: Physical Mechanisms, Performance Enhancement, and Cutting-Edge Computing\",\"authors\":\"Kaiyang Wang,&nbsp;Shuhui Ren,&nbsp;Yunfang Jia,&nbsp;Xiaobing Yan,&nbsp;Lizhen Wang,&nbsp;Yubo Fan\",\"doi\":\"10.1007/s40820-025-01787-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neuromorphic devices have shown great potential in simulating the function of biological neurons due to their efficient parallel information processing and low energy consumption. MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, an emerging two-dimensional material, stands out as an ideal candidate for fabricating neuromorphic devices. Its exceptional electrical performance and robust mechanical properties make it an ideal choice for this purpose. This review aims to uncover the advantages and properties of MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> in neuromorphic devices and to promote its further development. Firstly, we categorize several core physical mechanisms present in MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> neuromorphic devices and summarize in detail the reasons for their formation. Then, this work systematically summarizes and classifies advanced techniques for the three main optimization pathways of MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, such as doping engineering, interface engineering, and structural engineering. Significantly, this work highlights innovative applications of MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> neuromorphic devices in cutting-edge computing paradigms, particularly near-sensor computing and in-sensor computing. Finally, this review carefully compiles a table that integrates almost all research results involving MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> neuromorphic devices and discusses the challenges, development prospects, and feasibility of MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-based neuromorphic devices in practical applications, aiming to lay a solid theoretical foundation and provide technical support for further exploration and application of MXene-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> in the field of neuromorphic devices. </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01787-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01787-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01787-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

神经形态器件由于具有高效的并行信息处理和低能量消耗,在模拟生物神经元功能方面显示出巨大的潜力。MXene-Ti3C2Tx是一种新兴的二维材料,是制造神经形态器件的理想候选材料。其卓越的电气性能和强大的机械性能使其成为这一目的的理想选择。本文旨在揭示MXene-Ti3C2Tx在神经形态器件中的优势和性质,促进其进一步发展。首先,我们对MXene-Ti3C2Tx神经形态器件中存在的几种核心物理机制进行了分类,并详细总结了其形成的原因。然后,对掺杂工程、界面工程和结构工程等MXene-Ti3C2Tx三种主要优化途径的先进技术进行了系统总结和分类。值得注意的是,这项工作突出了MXene-Ti3C2Tx神经形态器件在尖端计算范式中的创新应用,特别是近传感器计算和传感器内计算。最后,本文精心编制了一份表格,整合了几乎所有涉及MXene-Ti3C2Tx神经形态器件的研究成果,讨论了基于MXene-Ti3C2Tx的神经形态器件在实际应用中的挑战、发展前景和可行性,旨在为MXene-Ti3C2Tx在神经形态器件领域的进一步探索和应用奠定坚实的理论基础和技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MXene-Ti3C2Tx-Based Neuromorphic Computing: Physical Mechanisms, Performance Enhancement, and Cutting-Edge Computing

Neuromorphic devices have shown great potential in simulating the function of biological neurons due to their efficient parallel information processing and low energy consumption. MXene-Ti3C2Tx, an emerging two-dimensional material, stands out as an ideal candidate for fabricating neuromorphic devices. Its exceptional electrical performance and robust mechanical properties make it an ideal choice for this purpose. This review aims to uncover the advantages and properties of MXene-Ti3C2Tx in neuromorphic devices and to promote its further development. Firstly, we categorize several core physical mechanisms present in MXene-Ti3C2Tx neuromorphic devices and summarize in detail the reasons for their formation. Then, this work systematically summarizes and classifies advanced techniques for the three main optimization pathways of MXene-Ti3C2Tx, such as doping engineering, interface engineering, and structural engineering. Significantly, this work highlights innovative applications of MXene-Ti3C2Tx neuromorphic devices in cutting-edge computing paradigms, particularly near-sensor computing and in-sensor computing. Finally, this review carefully compiles a table that integrates almost all research results involving MXene-Ti3C2Tx neuromorphic devices and discusses the challenges, development prospects, and feasibility of MXene-Ti3C2Tx-based neuromorphic devices in practical applications, aiming to lay a solid theoretical foundation and provide technical support for further exploration and application of MXene-Ti3C2Tx in the field of neuromorphic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信