在质子传导固体氧化物电解电池中高效产氢的机器学习定制阳极

IF 26.6 1区 材料科学 Q1 Engineering
Fangyuan Zheng, Baoyin Yuan, Youfeng Cai, Huanxin Xiang, Chunmei Tang, Ling Meng, Lei Du, Xiting Zhang, Feng Jiao, Yoshitaka Aoki, Ning Wang, Siyu Ye
{"title":"在质子传导固体氧化物电解电池中高效产氢的机器学习定制阳极","authors":"Fangyuan Zheng,&nbsp;Baoyin Yuan,&nbsp;Youfeng Cai,&nbsp;Huanxin Xiang,&nbsp;Chunmei Tang,&nbsp;Ling Meng,&nbsp;Lei Du,&nbsp;Xiting Zhang,&nbsp;Feng Jiao,&nbsp;Yoshitaka Aoki,&nbsp;Ning Wang,&nbsp;Siyu Ye","doi":"10.1007/s40820-025-01764-7","DOIUrl":null,"url":null,"abstract":"<div><p>In the global trend of vigorously developing hydrogen energy, proton-conducting solid oxide electrolysis cells (P-SOECs) have attracted significant attention due to their advantages of high efficiency and not requiring precious metals. However, the application of P-SOECs faces challenges, particularly in developing high-performance anodes possessing both high catalytic activity and ionic conductivity. In this study, La<sub>0.9</sub>Ba<sub>0.1</sub>Co<sub>0.7</sub>Ni<sub>0.3</sub>O<sub>3−<i>δ</i></sub> (LBCN9173) and La<sub>0.9</sub>Ca<sub>0.1</sub>Co<sub>0.7</sub>Ni<sub>0.3</sub>O<sub>3−<i>δ</i></sub> (LCCN9173) oxides are tailored as promising anodes by machine learning model, achieving the synergistic enhancement of water oxidation reaction kinetics and proton conduction, which is confirmed by comprehensively analyzing experiment and density functional theory calculation results. Furthermore, the anodic reaction mechanisms for P-SOECs with these anodes are elucidated by analyzing distribution of relaxation time spectra and Gibbs energy of water oxidation reaction, manifesting that the dissociation of H<sub>2</sub>O is facilitated on LBCN9173 anode. As a result, P-SOEC with LBCN9173 anode demonstrates a top-rank current density of 2.45 A cm<sup>−2</sup> at 1.3 V and an extremely low polarization resistance of 0.05 Ω cm<sup>2</sup> at 650 °C. This multi-scale, multi-faceted research approach not only discovered a high-performance anode but also proved the robust framework for the machine learning-assisted design of anodes for P-SOECs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01764-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Tailored Anodes for Efficient Hydrogen Energy Generation in Proton-Conducting Solid Oxide Electrolysis Cells\",\"authors\":\"Fangyuan Zheng,&nbsp;Baoyin Yuan,&nbsp;Youfeng Cai,&nbsp;Huanxin Xiang,&nbsp;Chunmei Tang,&nbsp;Ling Meng,&nbsp;Lei Du,&nbsp;Xiting Zhang,&nbsp;Feng Jiao,&nbsp;Yoshitaka Aoki,&nbsp;Ning Wang,&nbsp;Siyu Ye\",\"doi\":\"10.1007/s40820-025-01764-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the global trend of vigorously developing hydrogen energy, proton-conducting solid oxide electrolysis cells (P-SOECs) have attracted significant attention due to their advantages of high efficiency and not requiring precious metals. However, the application of P-SOECs faces challenges, particularly in developing high-performance anodes possessing both high catalytic activity and ionic conductivity. In this study, La<sub>0.9</sub>Ba<sub>0.1</sub>Co<sub>0.7</sub>Ni<sub>0.3</sub>O<sub>3−<i>δ</i></sub> (LBCN9173) and La<sub>0.9</sub>Ca<sub>0.1</sub>Co<sub>0.7</sub>Ni<sub>0.3</sub>O<sub>3−<i>δ</i></sub> (LCCN9173) oxides are tailored as promising anodes by machine learning model, achieving the synergistic enhancement of water oxidation reaction kinetics and proton conduction, which is confirmed by comprehensively analyzing experiment and density functional theory calculation results. Furthermore, the anodic reaction mechanisms for P-SOECs with these anodes are elucidated by analyzing distribution of relaxation time spectra and Gibbs energy of water oxidation reaction, manifesting that the dissociation of H<sub>2</sub>O is facilitated on LBCN9173 anode. As a result, P-SOEC with LBCN9173 anode demonstrates a top-rank current density of 2.45 A cm<sup>−2</sup> at 1.3 V and an extremely low polarization resistance of 0.05 Ω cm<sup>2</sup> at 650 °C. This multi-scale, multi-faceted research approach not only discovered a high-performance anode but also proved the robust framework for the machine learning-assisted design of anodes for P-SOECs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01764-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01764-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01764-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在全球大力发展氢能的趋势下,质子导电固体氧化物电解电池(P-SOECs)因其效率高、不需要贵金属等优点而备受关注。然而,p - soec的应用面临着挑战,特别是在开发具有高催化活性和离子电导率的高性能阳极方面。本研究通过机器学习模型,将La0.9Ba0.1Co0.7Ni0.3O3−δ (LBCN9173)和La0.9Ca0.1Co0.7Ni0.3O3−δ (LCCN9173)氧化物作为有前途的阳极,实现了水氧化反应动力学和质子传导的协同增强,并通过综合分析实验和密度泛函理论计算结果证实了这一点。此外,通过分析水氧化反应的弛豫时间谱和吉布斯能分布,阐明了p - soec与LBCN9173阳极的阳极反应机理,表明LBCN9173阳极有利于水的解离。结果表明,采用LBCN9173阳极的P-SOEC在1.3 V时电流密度为2.45 a cm - 2,在650℃时极化电阻极低,为0.05 Ω cm2。这种多尺度、多方面的研究方法不仅发现了高性能阳极,而且为p - soec阳极的机器学习辅助设计提供了强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Tailored Anodes for Efficient Hydrogen Energy Generation in Proton-Conducting Solid Oxide Electrolysis Cells

In the global trend of vigorously developing hydrogen energy, proton-conducting solid oxide electrolysis cells (P-SOECs) have attracted significant attention due to their advantages of high efficiency and not requiring precious metals. However, the application of P-SOECs faces challenges, particularly in developing high-performance anodes possessing both high catalytic activity and ionic conductivity. In this study, La0.9Ba0.1Co0.7Ni0.3O3−δ (LBCN9173) and La0.9Ca0.1Co0.7Ni0.3O3−δ (LCCN9173) oxides are tailored as promising anodes by machine learning model, achieving the synergistic enhancement of water oxidation reaction kinetics and proton conduction, which is confirmed by comprehensively analyzing experiment and density functional theory calculation results. Furthermore, the anodic reaction mechanisms for P-SOECs with these anodes are elucidated by analyzing distribution of relaxation time spectra and Gibbs energy of water oxidation reaction, manifesting that the dissociation of H2O is facilitated on LBCN9173 anode. As a result, P-SOEC with LBCN9173 anode demonstrates a top-rank current density of 2.45 A cm−2 at 1.3 V and an extremely low polarization resistance of 0.05 Ω cm2 at 650 °C. This multi-scale, multi-faceted research approach not only discovered a high-performance anode but also proved the robust framework for the machine learning-assisted design of anodes for P-SOECs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信