光夸克汤川耦合能有多大?

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Barbara Anna Erdelyi, Ramona Gröber, Nudžeim Selimović
{"title":"光夸克汤川耦合能有多大?","authors":"Barbara Anna Erdelyi,&nbsp;Ramona Gröber,&nbsp;Nudžeim Selimović","doi":"10.1007/JHEP05(2025)189","DOIUrl":null,"url":null,"abstract":"<p>We investigate models that can induce significant modifications to the couplings of first- and second-generation quarks with Higgs bosons. Specifically, we identify all simplified models featuring two vector-like quark states which can lead to substantial enhancements in these couplings. In addition, these models generate operators in Standard Model Effective Field Theory, both at tree-level and one-loop, that are constrained by electroweak precision and Higgs data. We show how to evade constraints from flavour physics and consider direct searches for vector-like quarks. Ultimately, we demonstrate that viable ultraviolet models can be found with first-generation quark Yukawa couplings enhanced by several hundred times their Standard Model value, while the Higgs couplings to charm (strange) quarks can be increased by factors of a few (few tens). Given the importance of electroweak precision data in constraining these models, we also discuss projections for future measurements at the Tera-<i>Z</i> FCC-ee machine.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)189.pdf","citationCount":"0","resultStr":"{\"title\":\"How large can the light quark Yukawa couplings be?\",\"authors\":\"Barbara Anna Erdelyi,&nbsp;Ramona Gröber,&nbsp;Nudžeim Selimović\",\"doi\":\"10.1007/JHEP05(2025)189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate models that can induce significant modifications to the couplings of first- and second-generation quarks with Higgs bosons. Specifically, we identify all simplified models featuring two vector-like quark states which can lead to substantial enhancements in these couplings. In addition, these models generate operators in Standard Model Effective Field Theory, both at tree-level and one-loop, that are constrained by electroweak precision and Higgs data. We show how to evade constraints from flavour physics and consider direct searches for vector-like quarks. Ultimately, we demonstrate that viable ultraviolet models can be found with first-generation quark Yukawa couplings enhanced by several hundred times their Standard Model value, while the Higgs couplings to charm (strange) quarks can be increased by factors of a few (few tens). Given the importance of electroweak precision data in constraining these models, we also discuss projections for future measurements at the Tera-<i>Z</i> FCC-ee machine.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 5\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)189.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP05(2025)189\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)189","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了能够诱导第一代和第二代夸克与希格斯玻色子耦合的重大修改的模型。具体来说,我们确定了所有具有两个类矢量夸克态的简化模型,这可以导致这些耦合的实质性增强。此外,这些模型在标准模型有效场论中产生的算子,在树级和单回路,都受到电弱精度和希格斯数据的限制。我们展示了如何逃避风味物理的限制,并考虑直接搜索矢量夸克。最后,我们证明了可行的紫外线模型可以用第一代夸克汤川耦合增强其标准模型值的数百倍,而希格斯与迷人(奇异)夸克的耦合可以增加几倍(几十倍)。鉴于电弱精度数据在约束这些模型中的重要性,我们还讨论了对未来在Tera-Z FCC-ee机器上测量的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How large can the light quark Yukawa couplings be?

We investigate models that can induce significant modifications to the couplings of first- and second-generation quarks with Higgs bosons. Specifically, we identify all simplified models featuring two vector-like quark states which can lead to substantial enhancements in these couplings. In addition, these models generate operators in Standard Model Effective Field Theory, both at tree-level and one-loop, that are constrained by electroweak precision and Higgs data. We show how to evade constraints from flavour physics and consider direct searches for vector-like quarks. Ultimately, we demonstrate that viable ultraviolet models can be found with first-generation quark Yukawa couplings enhanced by several hundred times their Standard Model value, while the Higgs couplings to charm (strange) quarks can be increased by factors of a few (few tens). Given the importance of electroweak precision data in constraining these models, we also discuss projections for future measurements at the Tera-Z FCC-ee machine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信