利用人工神经网络和RSM技术,结合ACKTR-DE和HHO算法,对废食用油生物柴油/柴油混合物的发动机性能和排放进行优化

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mehmet Ali Biberci, Mustafa Bahattin Çelik, Esma Ozhuner
{"title":"利用人工神经网络和RSM技术,结合ACKTR-DE和HHO算法,对废食用油生物柴油/柴油混合物的发动机性能和排放进行优化","authors":"Mehmet Ali Biberci,&nbsp;Mustafa Bahattin Çelik,&nbsp;Esma Ozhuner","doi":"10.1186/s13065-025-01512-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this experimental investigation, Artificial Neural Network (ANN) and Response Surface Methodology (RSM) model structures were constructed to predict and optimize the performance and exhaust emissions of a diesel engine operating on a blend of diesel fuel and waste oil biodiesel. The test engine was operated with 0%, 50%, and 100% biodiesel content under varying injection pressures and loads. The RSM model was used to derive regression equations from the experimental results. The correlation coefficient (R<sup>2</sup>) for all responses of the constructed model ranged from 0.9785 to 0.9997. By applying the developed model, the brake thermal efficiency (BTE) response was optimized to its maximum value, while all other responses were minimized. All responses were predicted using an ANN model with R &gt; 0.99 and a maximum mean absolute error (MAAE) of 1.723%. RSM-based optimization analysis was applied to the design of experiments (DOE). At an injection pressure of 180 bar, an engine torque of 3.846 Nm, and a 100 percent biodiesel ratio, optimal diesel engine performance characteristics, the lowest exhaust emissions, and the lowest specific fuel consumption values were achieved. In addition, the RSM approach performed satisfactorily, with a desirability value of 0.750. The RSM regression equations were assessed using the Actor Critic with Kronecker-Factored Trust Region-Differential Evolution (ACKTR-DE) and Harris Hawks Optimization (HHO) algorithms. The outcomes derived from the ACKTR-DE and HHO algorithms corroborated the results obtained from the RSM. Furthermore, verification experiments were conducted to confirm the optimal results, thus demonstrating that the combined use of RSM, ANN, and advanced algorithms offers a robust and accurate framework for optimizing biodiesel engine performance.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01512-3","citationCount":"0","resultStr":"{\"title\":\"Engine performance and emission optimization with waste cooking oil biodiesel/diesel blend using ANN and RSM techniques coupled with ACKTR-DE and HHO algorithms\",\"authors\":\"Mehmet Ali Biberci,&nbsp;Mustafa Bahattin Çelik,&nbsp;Esma Ozhuner\",\"doi\":\"10.1186/s13065-025-01512-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this experimental investigation, Artificial Neural Network (ANN) and Response Surface Methodology (RSM) model structures were constructed to predict and optimize the performance and exhaust emissions of a diesel engine operating on a blend of diesel fuel and waste oil biodiesel. The test engine was operated with 0%, 50%, and 100% biodiesel content under varying injection pressures and loads. The RSM model was used to derive regression equations from the experimental results. The correlation coefficient (R<sup>2</sup>) for all responses of the constructed model ranged from 0.9785 to 0.9997. By applying the developed model, the brake thermal efficiency (BTE) response was optimized to its maximum value, while all other responses were minimized. All responses were predicted using an ANN model with R &gt; 0.99 and a maximum mean absolute error (MAAE) of 1.723%. RSM-based optimization analysis was applied to the design of experiments (DOE). At an injection pressure of 180 bar, an engine torque of 3.846 Nm, and a 100 percent biodiesel ratio, optimal diesel engine performance characteristics, the lowest exhaust emissions, and the lowest specific fuel consumption values were achieved. In addition, the RSM approach performed satisfactorily, with a desirability value of 0.750. The RSM regression equations were assessed using the Actor Critic with Kronecker-Factored Trust Region-Differential Evolution (ACKTR-DE) and Harris Hawks Optimization (HHO) algorithms. The outcomes derived from the ACKTR-DE and HHO algorithms corroborated the results obtained from the RSM. Furthermore, verification experiments were conducted to confirm the optimal results, thus demonstrating that the combined use of RSM, ANN, and advanced algorithms offers a robust and accurate framework for optimizing biodiesel engine performance.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":496,\"journal\":{\"name\":\"BMC Chemistry\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01512-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13065-025-01512-3\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01512-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项实验研究中,构建了人工神经网络(ANN)和响应面法(RSM)模型结构,以预测和优化柴油机在柴油和废油生物柴油混合燃料下的性能和排放。在不同的喷射压力和负载下,测试发动机在0%、50%和100%生物柴油含量下运行。采用RSM模型对实验结果进行回归方程推导。各模型的相关系数(R2)在0.9785 ~ 0.9997之间。应用所建立的模型,将制动热效率(BTE)响应优化到最大值,同时使其他响应最小化。所有反应均采用人工神经网络模型预测,R > 0.99,最大平均绝对误差(MAAE)为1.723%。将基于rsm的优化分析应用于实验设计。在180 bar的喷射压力、3.846 Nm的发动机扭矩和100%的生物柴油配比下,实现了最佳的柴油机性能特征、最低的废气排放和最低的油耗值。此外,RSM方法表现令人满意,可取值为0.750。采用kronecker - factor Trust Region-Differential Evolution (ACKTR-DE)和Harris Hawks Optimization (HHO)算法对RSM回归方程进行评价。ACKTR-DE和HHO算法得到的结果与RSM得到的结果一致。此外,还进行了验证实验来验证最优结果,从而表明RSM、ANN和先进算法的结合使用为优化生物柴油发动机的性能提供了一个鲁棒且准确的框架。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engine performance and emission optimization with waste cooking oil biodiesel/diesel blend using ANN and RSM techniques coupled with ACKTR-DE and HHO algorithms

In this experimental investigation, Artificial Neural Network (ANN) and Response Surface Methodology (RSM) model structures were constructed to predict and optimize the performance and exhaust emissions of a diesel engine operating on a blend of diesel fuel and waste oil biodiesel. The test engine was operated with 0%, 50%, and 100% biodiesel content under varying injection pressures and loads. The RSM model was used to derive regression equations from the experimental results. The correlation coefficient (R2) for all responses of the constructed model ranged from 0.9785 to 0.9997. By applying the developed model, the brake thermal efficiency (BTE) response was optimized to its maximum value, while all other responses were minimized. All responses were predicted using an ANN model with R > 0.99 and a maximum mean absolute error (MAAE) of 1.723%. RSM-based optimization analysis was applied to the design of experiments (DOE). At an injection pressure of 180 bar, an engine torque of 3.846 Nm, and a 100 percent biodiesel ratio, optimal diesel engine performance characteristics, the lowest exhaust emissions, and the lowest specific fuel consumption values were achieved. In addition, the RSM approach performed satisfactorily, with a desirability value of 0.750. The RSM regression equations were assessed using the Actor Critic with Kronecker-Factored Trust Region-Differential Evolution (ACKTR-DE) and Harris Hawks Optimization (HHO) algorithms. The outcomes derived from the ACKTR-DE and HHO algorithms corroborated the results obtained from the RSM. Furthermore, verification experiments were conducted to confirm the optimal results, thus demonstrating that the combined use of RSM, ANN, and advanced algorithms offers a robust and accurate framework for optimizing biodiesel engine performance.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Chemistry
BMC Chemistry Chemistry-General Chemistry
CiteScore
5.30
自引率
2.20%
发文量
92
审稿时长
27 weeks
期刊介绍: BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family. Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信