用于x射线探测的金属卤化物钙钛矿闪烁体研究进展

IF 26.6 1区 材料科学 Q1 Engineering
Ting Wang, Guoqiang Zeng, Yang Michael Yang, Zhi Yang, Tianchi Wang, Hao Li, Lulu Han, Xue Yu, Xuhui Xu, Xiaoping Ouyang
{"title":"用于x射线探测的金属卤化物钙钛矿闪烁体研究进展","authors":"Ting Wang,&nbsp;Guoqiang Zeng,&nbsp;Yang Michael Yang,&nbsp;Zhi Yang,&nbsp;Tianchi Wang,&nbsp;Hao Li,&nbsp;Lulu Han,&nbsp;Xue Yu,&nbsp;Xuhui Xu,&nbsp;Xiaoping Ouyang","doi":"10.1007/s40820-025-01772-7","DOIUrl":null,"url":null,"abstract":"<div><p>The relentless pursuit of advanced X-ray detection technologies has been significantly bolstered by the emergence of metal halides perovskites (MHPs) and their derivatives, which possess remarkable light yield and X-ray sensitivity. This comprehensive review delves into cutting-edge approaches for optimizing MHP scintillators performances by enhancing intrinsic physical properties and employing engineering radioluminescent (RL) light strategies, underscoring their potential for developing materials with superior high-resolution X-ray detection and imaging capabilities. We initially explore into recent research focused on strategies to effectively engineer the intrinsic physical properties of MHP scintillators, including light yield and response times. Additionally, we explore innovative engineering strategies involving stacked structures, waveguide effects, chiral circularly polarized luminescence, increased transparency, and the fabrication of flexile MHP scintillators, all of which effectively manage the RL light to achieve high-resolution and high-contrast X-ray imaging. Finally, we provide a roadmap for advancing next-generation MHP scintillators, highlighting their transformative potential in high-performance X-ray detection systems.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01772-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Advances in Metal Halide Perovskite Scintillators for X-Ray Detection\",\"authors\":\"Ting Wang,&nbsp;Guoqiang Zeng,&nbsp;Yang Michael Yang,&nbsp;Zhi Yang,&nbsp;Tianchi Wang,&nbsp;Hao Li,&nbsp;Lulu Han,&nbsp;Xue Yu,&nbsp;Xuhui Xu,&nbsp;Xiaoping Ouyang\",\"doi\":\"10.1007/s40820-025-01772-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The relentless pursuit of advanced X-ray detection technologies has been significantly bolstered by the emergence of metal halides perovskites (MHPs) and their derivatives, which possess remarkable light yield and X-ray sensitivity. This comprehensive review delves into cutting-edge approaches for optimizing MHP scintillators performances by enhancing intrinsic physical properties and employing engineering radioluminescent (RL) light strategies, underscoring their potential for developing materials with superior high-resolution X-ray detection and imaging capabilities. We initially explore into recent research focused on strategies to effectively engineer the intrinsic physical properties of MHP scintillators, including light yield and response times. Additionally, we explore innovative engineering strategies involving stacked structures, waveguide effects, chiral circularly polarized luminescence, increased transparency, and the fabrication of flexile MHP scintillators, all of which effectively manage the RL light to achieve high-resolution and high-contrast X-ray imaging. Finally, we provide a roadmap for advancing next-generation MHP scintillators, highlighting their transformative potential in high-performance X-ray detection systems.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01772-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01772-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01772-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

金属卤化物钙钛矿(MHPs)及其衍生物的出现极大地支持了对先进x射线探测技术的不懈追求,它们具有显着的光产率和x射线灵敏度。这篇综合综述深入研究了优化MHP闪烁体性能的前沿方法,通过增强内在物理特性和采用工程放射发光(RL)光策略,强调了它们在开发具有高分辨率x射线探测和成像能力的材料方面的潜力。我们首先探讨了最近的研究,重点是如何有效地设计MHP闪烁体的内在物理性质,包括光产率和响应时间。此外,我们探索了涉及堆叠结构、波导效应、手性圆偏振发光、增加透明度和柔性MHP闪烁体制造的创新工程策略,所有这些都有效地管理RL光,以实现高分辨率和高对比度的x射线成像。最后,我们提供了推进下一代MHP闪烁体的路线图,强调了它们在高性能x射线探测系统中的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in Metal Halide Perovskite Scintillators for X-Ray Detection

The relentless pursuit of advanced X-ray detection technologies has been significantly bolstered by the emergence of metal halides perovskites (MHPs) and their derivatives, which possess remarkable light yield and X-ray sensitivity. This comprehensive review delves into cutting-edge approaches for optimizing MHP scintillators performances by enhancing intrinsic physical properties and employing engineering radioluminescent (RL) light strategies, underscoring their potential for developing materials with superior high-resolution X-ray detection and imaging capabilities. We initially explore into recent research focused on strategies to effectively engineer the intrinsic physical properties of MHP scintillators, including light yield and response times. Additionally, we explore innovative engineering strategies involving stacked structures, waveguide effects, chiral circularly polarized luminescence, increased transparency, and the fabrication of flexile MHP scintillators, all of which effectively manage the RL light to achieve high-resolution and high-contrast X-ray imaging. Finally, we provide a roadmap for advancing next-generation MHP scintillators, highlighting their transformative potential in high-performance X-ray detection systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信