基于分数的生成模型的概率流ODE收敛性分析

IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Daniel Zhengyu Huang;Jiaoyang Huang;Zhengjiang Lin
{"title":"基于分数的生成模型的概率流ODE收敛性分析","authors":"Daniel Zhengyu Huang;Jiaoyang Huang;Zhengjiang Lin","doi":"10.1109/TIT.2025.3557050","DOIUrl":null,"url":null,"abstract":"Score-based generative models have emerged as a powerful approach for sampling high-dimensional probability distributions. Despite their effectiveness, their theoretical underpinnings remain relatively underdeveloped. In this work, we study the convergence properties of deterministic samplers based on probability flow ODEs from both theoretical and numerical perspectives. Assuming access to <inline-formula> <tex-math>$L^{2}$ </tex-math></inline-formula>-accurate estimates of the score function, we prove the total variation between the target and the generated data distributions can be bounded above by <inline-formula> <tex-math>${\\mathcal {O}}(d^{3/4}\\delta ^{1/2})$ </tex-math></inline-formula> in the continuous time level, where <italic>d</i> denotes the data dimension and <inline-formula> <tex-math>$\\delta $ </tex-math></inline-formula> represents the <inline-formula> <tex-math>$L^{2}$ </tex-math></inline-formula>-score matching error. For practical implementations using a <italic>p</i>-th order Runge-Kutta integrator with step size <italic>h</i>, we establish error bounds of <inline-formula> <tex-math>${\\mathcal {O}}(d^{3/4}\\delta ^{1/2} + d\\cdot (dh)^{p})$ </tex-math></inline-formula> at the discrete level. Finally, we present numerical studies on problems up to 128 dimensions to verify our theory.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 6","pages":"4581-4601"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence Analysis of Probability Flow ODE for Score-Based Generative Models\",\"authors\":\"Daniel Zhengyu Huang;Jiaoyang Huang;Zhengjiang Lin\",\"doi\":\"10.1109/TIT.2025.3557050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Score-based generative models have emerged as a powerful approach for sampling high-dimensional probability distributions. Despite their effectiveness, their theoretical underpinnings remain relatively underdeveloped. In this work, we study the convergence properties of deterministic samplers based on probability flow ODEs from both theoretical and numerical perspectives. Assuming access to <inline-formula> <tex-math>$L^{2}$ </tex-math></inline-formula>-accurate estimates of the score function, we prove the total variation between the target and the generated data distributions can be bounded above by <inline-formula> <tex-math>${\\\\mathcal {O}}(d^{3/4}\\\\delta ^{1/2})$ </tex-math></inline-formula> in the continuous time level, where <italic>d</i> denotes the data dimension and <inline-formula> <tex-math>$\\\\delta $ </tex-math></inline-formula> represents the <inline-formula> <tex-math>$L^{2}$ </tex-math></inline-formula>-score matching error. For practical implementations using a <italic>p</i>-th order Runge-Kutta integrator with step size <italic>h</i>, we establish error bounds of <inline-formula> <tex-math>${\\\\mathcal {O}}(d^{3/4}\\\\delta ^{1/2} + d\\\\cdot (dh)^{p})$ </tex-math></inline-formula> at the discrete level. Finally, we present numerical studies on problems up to 128 dimensions to verify our theory.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 6\",\"pages\":\"4581-4601\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10947535/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10947535/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于分数的生成模型已经成为一种对高维概率分布进行采样的强大方法。尽管它们很有效,但它们的理论基础仍然相对不发达。本文从理论和数值两个方面研究了基于概率流ode的确定性采样器的收敛性。假设可以获得分数函数的$L^{2}$ -精确估计,我们证明了目标与生成的数据分布之间的总变化可以在连续时间水平上由${\mathcal {O}}(d^{3/4}\delta ^{1/2})$有界,其中d表示数据维数,$\delta $表示$L^{2}$ -分数匹配误差。对于使用步长为h的p阶龙格-库塔积分器的实际实现,我们在离散级建立了${\mathcal {O}}(d^{3/4}\delta ^{1/2} + d\cdot (dh)^{p})$的误差界。最后,我们给出了128维问题的数值研究来验证我们的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence Analysis of Probability Flow ODE for Score-Based Generative Models
Score-based generative models have emerged as a powerful approach for sampling high-dimensional probability distributions. Despite their effectiveness, their theoretical underpinnings remain relatively underdeveloped. In this work, we study the convergence properties of deterministic samplers based on probability flow ODEs from both theoretical and numerical perspectives. Assuming access to $L^{2}$ -accurate estimates of the score function, we prove the total variation between the target and the generated data distributions can be bounded above by ${\mathcal {O}}(d^{3/4}\delta ^{1/2})$ in the continuous time level, where d denotes the data dimension and $\delta $ represents the $L^{2}$ -score matching error. For practical implementations using a p-th order Runge-Kutta integrator with step size h, we establish error bounds of ${\mathcal {O}}(d^{3/4}\delta ^{1/2} + d\cdot (dh)^{p})$ at the discrete level. Finally, we present numerical studies on problems up to 128 dimensions to verify our theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信