基于小样本计数的宽带微波微流控化学计量学的主成分回归

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Marie Mertens;Raphaël Trouillon;Tomislav Markovic;Ke Wu;Dominique Schreurs
{"title":"基于小样本计数的宽带微波微流控化学计量学的主成分回归","authors":"Marie Mertens;Raphaël Trouillon;Tomislav Markovic;Ke Wu;Dominique Schreurs","doi":"10.1109/JERM.2025.3537462","DOIUrl":null,"url":null,"abstract":"While broadband dielectric spectroscopy enables label-free analysis of biological and chemical materials, extracting multiple concentrations from the data has remained a challenge. This work is one of the first demonstrations of simultaneous concentration extraction of three liquid constituents in a solution using broadband microwave spectroscopic data. Furthermore, the used methods eliminate the need for de-embedding or characterizing the measurement setup, simplifying the process. Advanced regression techniques such as Principal Component Regression (PCR) and Principal Least Squares (PLS) are applied to determine the concentrations of sodium chloride, glucose, and ethanol in water. As input data, <inline-formula><tex-math>$S$</tex-math></inline-formula>-parameters are measured between 0.5 and 26.5 GHz on a broadband coplanar waveguide sensor with a microfluidic container to transport the liquids. The training datasets consist of 27 and 34 samples, respectively. The mean absolute percentage error for sodium chloride predictions ranged from 3-5% for the different methods, while the minimal errors for glucose and ethanol predictions were 6-7% and 4-6%, respectively.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 2","pages":"117-125"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principal Component Regression for Broadband Microwave-Microfluidic Chemometrics on Small Sample Counts\",\"authors\":\"Marie Mertens;Raphaël Trouillon;Tomislav Markovic;Ke Wu;Dominique Schreurs\",\"doi\":\"10.1109/JERM.2025.3537462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While broadband dielectric spectroscopy enables label-free analysis of biological and chemical materials, extracting multiple concentrations from the data has remained a challenge. This work is one of the first demonstrations of simultaneous concentration extraction of three liquid constituents in a solution using broadband microwave spectroscopic data. Furthermore, the used methods eliminate the need for de-embedding or characterizing the measurement setup, simplifying the process. Advanced regression techniques such as Principal Component Regression (PCR) and Principal Least Squares (PLS) are applied to determine the concentrations of sodium chloride, glucose, and ethanol in water. As input data, <inline-formula><tex-math>$S$</tex-math></inline-formula>-parameters are measured between 0.5 and 26.5 GHz on a broadband coplanar waveguide sensor with a microfluidic container to transport the liquids. The training datasets consist of 27 and 34 samples, respectively. The mean absolute percentage error for sodium chloride predictions ranged from 3-5% for the different methods, while the minimal errors for glucose and ethanol predictions were 6-7% and 4-6%, respectively.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":\"9 2\",\"pages\":\"117-125\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10904241/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10904241/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

虽然宽带介电光谱可以实现生物和化学材料的无标签分析,但从数据中提取多种浓度仍然是一个挑战。这项工作是利用宽带微波光谱数据同时浓缩提取溶液中三种液体成分的首次演示之一。此外,所使用的方法消除了去嵌入或表征测量设置的需要,简化了过程。先进的回归技术,如主成分回归(PCR)和主最小二乘(PLS)被应用于确定氯化钠,葡萄糖和乙醇在水中的浓度。作为输入数据,$S$参数在0.5和26.5 GHz之间的宽带共面波导传感器上测量,微流体容器用于传输液体。训练数据集分别由27个和34个样本组成。不同方法预测氯化钠的平均绝对百分比误差在3-5%之间,而葡萄糖和乙醇预测的最小误差分别为6-7%和4-6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principal Component Regression for Broadband Microwave-Microfluidic Chemometrics on Small Sample Counts
While broadband dielectric spectroscopy enables label-free analysis of biological and chemical materials, extracting multiple concentrations from the data has remained a challenge. This work is one of the first demonstrations of simultaneous concentration extraction of three liquid constituents in a solution using broadband microwave spectroscopic data. Furthermore, the used methods eliminate the need for de-embedding or characterizing the measurement setup, simplifying the process. Advanced regression techniques such as Principal Component Regression (PCR) and Principal Least Squares (PLS) are applied to determine the concentrations of sodium chloride, glucose, and ethanol in water. As input data, $S$-parameters are measured between 0.5 and 26.5 GHz on a broadband coplanar waveguide sensor with a microfluidic container to transport the liquids. The training datasets consist of 27 and 34 samples, respectively. The mean absolute percentage error for sodium chloride predictions ranged from 3-5% for the different methods, while the minimal errors for glucose and ethanol predictions were 6-7% and 4-6%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信