P. Neutens;E. Mafakheri;X. Zheng;P. Helin;Z. Jafari;C. Lin;G. Jeevanandam;Nga P. Pham;S. Fan;C. Su;R. Jansen;P. Van Dorpe;N. Le Thomas;C. Haffner
{"title":"用于紫外和可见光应用的200mm晶圆级Al2O3光子波导技术","authors":"P. Neutens;E. Mafakheri;X. Zheng;P. Helin;Z. Jafari;C. Lin;G. Jeevanandam;Nga P. Pham;S. Fan;C. Su;R. Jansen;P. Van Dorpe;N. Le Thomas;C. Haffner","doi":"10.1109/JPHOT.2025.3568162","DOIUrl":null,"url":null,"abstract":"Low-loss, UV wavelength compatible Al<sub>2</sub>O<sub>3</sub> photonic waveguides have been fabricated in a 200 mm CMOS pilot line. The Al<sub>2</sub>O<sub>3</sub> waveguide layer optical properties and roughness were characterized by ellipsometry and AFM, respectively. Optical losses of the slab mode in the waveguide layer were studied by prism coupling. SiO<sub>2</sub>-cladded Al<sub>2</sub>O<sub>3</sub> waveguides were patterned on 200 mm wafers and propagation losses were measured at 266, 360, 450, 532 and 638 nm wavelengths. Wafer-level measurements for 360–638 nm show an average propagation loss below 0.6 dB/cm, while die-level measurements for 266 nm yield average propagation losses between 4.3 and 14.7 dB/cm. To study the dependence of the wave propagation on processing variations, large sets of Mach-Zehnder interferometers with varying arm lengths were measured at a wavelength of 360 nm, and the coherence length of the standard 450 nm wide and 110 nm high Al<sub>2</sub>O<sub>3</sub> waveguide was calculated to be longer than 2.2 mm.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 3","pages":"1-6"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10993371","citationCount":"0","resultStr":"{\"title\":\"A 200 mm Wafer-Scale Al2O3 Photonics Waveguide Technology for UV and Visible Applications\",\"authors\":\"P. Neutens;E. Mafakheri;X. Zheng;P. Helin;Z. Jafari;C. Lin;G. Jeevanandam;Nga P. Pham;S. Fan;C. Su;R. Jansen;P. Van Dorpe;N. Le Thomas;C. Haffner\",\"doi\":\"10.1109/JPHOT.2025.3568162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-loss, UV wavelength compatible Al<sub>2</sub>O<sub>3</sub> photonic waveguides have been fabricated in a 200 mm CMOS pilot line. The Al<sub>2</sub>O<sub>3</sub> waveguide layer optical properties and roughness were characterized by ellipsometry and AFM, respectively. Optical losses of the slab mode in the waveguide layer were studied by prism coupling. SiO<sub>2</sub>-cladded Al<sub>2</sub>O<sub>3</sub> waveguides were patterned on 200 mm wafers and propagation losses were measured at 266, 360, 450, 532 and 638 nm wavelengths. Wafer-level measurements for 360–638 nm show an average propagation loss below 0.6 dB/cm, while die-level measurements for 266 nm yield average propagation losses between 4.3 and 14.7 dB/cm. To study the dependence of the wave propagation on processing variations, large sets of Mach-Zehnder interferometers with varying arm lengths were measured at a wavelength of 360 nm, and the coherence length of the standard 450 nm wide and 110 nm high Al<sub>2</sub>O<sub>3</sub> waveguide was calculated to be longer than 2.2 mm.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"17 3\",\"pages\":\"1-6\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10993371\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10993371/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10993371/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A 200 mm Wafer-Scale Al2O3 Photonics Waveguide Technology for UV and Visible Applications
Low-loss, UV wavelength compatible Al2O3 photonic waveguides have been fabricated in a 200 mm CMOS pilot line. The Al2O3 waveguide layer optical properties and roughness were characterized by ellipsometry and AFM, respectively. Optical losses of the slab mode in the waveguide layer were studied by prism coupling. SiO2-cladded Al2O3 waveguides were patterned on 200 mm wafers and propagation losses were measured at 266, 360, 450, 532 and 638 nm wavelengths. Wafer-level measurements for 360–638 nm show an average propagation loss below 0.6 dB/cm, while die-level measurements for 266 nm yield average propagation losses between 4.3 and 14.7 dB/cm. To study the dependence of the wave propagation on processing variations, large sets of Mach-Zehnder interferometers with varying arm lengths were measured at a wavelength of 360 nm, and the coherence length of the standard 450 nm wide and 110 nm high Al2O3 waveguide was calculated to be longer than 2.2 mm.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.