{"title":"具有h级层次局部性的最优循环码的构造","authors":"Xing Liu","doi":"10.1109/TIT.2025.3542905","DOIUrl":null,"url":null,"abstract":"In order to correct different numbers of erasures in distributed storage systems, the design of locally repairable codes with hierarchical locality (H-LRCs) is crucial. In this paper, we study <italic>h</i>-level H-LRCs where <italic>h</i> is not limited to 2. We present six classes of cyclic <italic>h</i>-level H-LRCs which are optimal with respect to the generalized Singleton-like bound. The first five classes of cyclic <italic>h</i>-level H-LRCs have length <inline-formula> <tex-math>$ln_{1}$ </tex-math></inline-formula> such that <inline-formula> <tex-math>$\\gcd (l,q)=1$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$n_{1}|(q-1)$ </tex-math></inline-formula> or <inline-formula> <tex-math>$n_{1}|(q+1)$ </tex-math></inline-formula>. The last class of cyclic <italic>h</i>-level H-LRCs has length <inline-formula> <tex-math>$n|(q+1)$ </tex-math></inline-formula>. The minimum Hamming distances of them are <inline-formula> <tex-math>$d=\\delta _{1}+i$ </tex-math></inline-formula> where <italic>i</i> can take 0, 2, <inline-formula> <tex-math>$\\delta _{h}$ </tex-math></inline-formula>, and so on. Furthermore, these six classes of cyclic <italic>h</i>-level H-LRCs have new parameters which are not covered in the literature.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 6","pages":"4193-4205"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructions of Optimal Cyclic Codes With h-Level Hierarchical Locality\",\"authors\":\"Xing Liu\",\"doi\":\"10.1109/TIT.2025.3542905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to correct different numbers of erasures in distributed storage systems, the design of locally repairable codes with hierarchical locality (H-LRCs) is crucial. In this paper, we study <italic>h</i>-level H-LRCs where <italic>h</i> is not limited to 2. We present six classes of cyclic <italic>h</i>-level H-LRCs which are optimal with respect to the generalized Singleton-like bound. The first five classes of cyclic <italic>h</i>-level H-LRCs have length <inline-formula> <tex-math>$ln_{1}$ </tex-math></inline-formula> such that <inline-formula> <tex-math>$\\\\gcd (l,q)=1$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$n_{1}|(q-1)$ </tex-math></inline-formula> or <inline-formula> <tex-math>$n_{1}|(q+1)$ </tex-math></inline-formula>. The last class of cyclic <italic>h</i>-level H-LRCs has length <inline-formula> <tex-math>$n|(q+1)$ </tex-math></inline-formula>. The minimum Hamming distances of them are <inline-formula> <tex-math>$d=\\\\delta _{1}+i$ </tex-math></inline-formula> where <italic>i</i> can take 0, 2, <inline-formula> <tex-math>$\\\\delta _{h}$ </tex-math></inline-formula>, and so on. Furthermore, these six classes of cyclic <italic>h</i>-level H-LRCs have new parameters which are not covered in the literature.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 6\",\"pages\":\"4193-4205\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10896449/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10896449/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Constructions of Optimal Cyclic Codes With h-Level Hierarchical Locality
In order to correct different numbers of erasures in distributed storage systems, the design of locally repairable codes with hierarchical locality (H-LRCs) is crucial. In this paper, we study h-level H-LRCs where h is not limited to 2. We present six classes of cyclic h-level H-LRCs which are optimal with respect to the generalized Singleton-like bound. The first five classes of cyclic h-level H-LRCs have length $ln_{1}$ such that $\gcd (l,q)=1$ , and $n_{1}|(q-1)$ or $n_{1}|(q+1)$ . The last class of cyclic h-level H-LRCs has length $n|(q+1)$ . The minimum Hamming distances of them are $d=\delta _{1}+i$ where i can take 0, 2, $\delta _{h}$ , and so on. Furthermore, these six classes of cyclic h-level H-LRCs have new parameters which are not covered in the literature.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.