{"title":"Kendall τ -Metric下排列码大小的改进界","authors":"Farzad Parvaresh;Reza Sobhani;Alireza Abdollahi;Javad Bagherian;Fatemeh Jafari;Maryam Khatami","doi":"10.1109/TIT.2025.3561119","DOIUrl":null,"url":null,"abstract":"In order to overcome the challenges caused by flash memories and also to protect against errors related to reading information stored in DNA molecules in the shotgun sequencing method, the rank modulation method has been proposed. In the rank modulation framework, codewords are permutations. In this paper, we study the largest size <inline-formula> <tex-math>$P(n, d)$ </tex-math></inline-formula> of permutation codes of length <italic>n</i>, i.e., subsets of the set <inline-formula> <tex-math>$S_{n}$ </tex-math></inline-formula> of all permutations on <inline-formula> <tex-math>$\\{1,\\ldots , n\\}$ </tex-math></inline-formula> with the minimum distance at least <inline-formula> <tex-math>$d\\in \\left \\{{{1,\\ldots ,\\binom {n}{2}}}\\right \\}$ </tex-math></inline-formula> under the Kendall <inline-formula> <tex-math>$\\tau $ </tex-math></inline-formula>-metric. By presenting an algorithm and two theorems, we improve the known lower and upper bounds for <inline-formula> <tex-math>$P(n,d)$ </tex-math></inline-formula>. In particular, we show that <inline-formula> <tex-math>$P(n,d)=4$ </tex-math></inline-formula> for all <inline-formula> <tex-math>$n\\geq 6$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\frac {3}{5}\\binom {n}{2}\\lt d \\leq \\frac {2}{3} \\binom {n}{2}$ </tex-math></inline-formula>. Additionally, we prove that for any prime number <italic>n</i> and integer <inline-formula> <tex-math>$r\\leq \\frac {n}{6}$ </tex-math></inline-formula>, <inline-formula> <tex-math>$ P(n,3)\\leq (n-1)!-\\dfrac {n-6r}{\\sqrt {n^{2}-8rn+20r^{2}}}\\sqrt {\\dfrac {(n-1)!}{n(n-r)!}}$ </tex-math></inline-formula>. This result greatly improves the upper bound of <inline-formula> <tex-math>$P(n,3)$ </tex-math></inline-formula> for all primes <inline-formula> <tex-math>$n\\geq 37$ </tex-math></inline-formula>.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 6","pages":"4156-4166"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Bounds on the Size of Permutation Codes Under Kendall τ -Metric\",\"authors\":\"Farzad Parvaresh;Reza Sobhani;Alireza Abdollahi;Javad Bagherian;Fatemeh Jafari;Maryam Khatami\",\"doi\":\"10.1109/TIT.2025.3561119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to overcome the challenges caused by flash memories and also to protect against errors related to reading information stored in DNA molecules in the shotgun sequencing method, the rank modulation method has been proposed. In the rank modulation framework, codewords are permutations. In this paper, we study the largest size <inline-formula> <tex-math>$P(n, d)$ </tex-math></inline-formula> of permutation codes of length <italic>n</i>, i.e., subsets of the set <inline-formula> <tex-math>$S_{n}$ </tex-math></inline-formula> of all permutations on <inline-formula> <tex-math>$\\\\{1,\\\\ldots , n\\\\}$ </tex-math></inline-formula> with the minimum distance at least <inline-formula> <tex-math>$d\\\\in \\\\left \\\\{{{1,\\\\ldots ,\\\\binom {n}{2}}}\\\\right \\\\}$ </tex-math></inline-formula> under the Kendall <inline-formula> <tex-math>$\\\\tau $ </tex-math></inline-formula>-metric. By presenting an algorithm and two theorems, we improve the known lower and upper bounds for <inline-formula> <tex-math>$P(n,d)$ </tex-math></inline-formula>. In particular, we show that <inline-formula> <tex-math>$P(n,d)=4$ </tex-math></inline-formula> for all <inline-formula> <tex-math>$n\\\\geq 6$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\\\frac {3}{5}\\\\binom {n}{2}\\\\lt d \\\\leq \\\\frac {2}{3} \\\\binom {n}{2}$ </tex-math></inline-formula>. Additionally, we prove that for any prime number <italic>n</i> and integer <inline-formula> <tex-math>$r\\\\leq \\\\frac {n}{6}$ </tex-math></inline-formula>, <inline-formula> <tex-math>$ P(n,3)\\\\leq (n-1)!-\\\\dfrac {n-6r}{\\\\sqrt {n^{2}-8rn+20r^{2}}}\\\\sqrt {\\\\dfrac {(n-1)!}{n(n-r)!}}$ </tex-math></inline-formula>. This result greatly improves the upper bound of <inline-formula> <tex-math>$P(n,3)$ </tex-math></inline-formula> for all primes <inline-formula> <tex-math>$n\\\\geq 37$ </tex-math></inline-formula>.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 6\",\"pages\":\"4156-4166\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10965831/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10965831/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Improved Bounds on the Size of Permutation Codes Under Kendall τ -Metric
In order to overcome the challenges caused by flash memories and also to protect against errors related to reading information stored in DNA molecules in the shotgun sequencing method, the rank modulation method has been proposed. In the rank modulation framework, codewords are permutations. In this paper, we study the largest size $P(n, d)$ of permutation codes of length n, i.e., subsets of the set $S_{n}$ of all permutations on $\{1,\ldots , n\}$ with the minimum distance at least $d\in \left \{{{1,\ldots ,\binom {n}{2}}}\right \}$ under the Kendall $\tau $ -metric. By presenting an algorithm and two theorems, we improve the known lower and upper bounds for $P(n,d)$ . In particular, we show that $P(n,d)=4$ for all $n\geq 6$ and $\frac {3}{5}\binom {n}{2}\lt d \leq \frac {2}{3} \binom {n}{2}$ . Additionally, we prove that for any prime number n and integer $r\leq \frac {n}{6}$ , $ P(n,3)\leq (n-1)!-\dfrac {n-6r}{\sqrt {n^{2}-8rn+20r^{2}}}\sqrt {\dfrac {(n-1)!}{n(n-r)!}}$ . This result greatly improves the upper bound of $P(n,3)$ for all primes $n\geq 37$ .
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.