块排序解码问题和LRPC码:小尺寸密码系统

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yongcheng Song;Jiang Zhang;Xinyi Huang;Wei Wu
{"title":"块排序解码问题和LRPC码:小尺寸密码系统","authors":"Yongcheng Song;Jiang Zhang;Xinyi Huang;Wei Wu","doi":"10.1109/TIT.2025.3555075","DOIUrl":null,"url":null,"abstract":"In this paper, we initiate the study of the Rank Decoding (RD) problem and Low Rank Parity Check (LRPC) codes with blockwise structure in rank-based cryptosystems. First, we introduce the blockwise errors (<inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>-errors) where each error consists of <inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula> blocks of coordinates with direct-sum supports, and define the blockwise RD (<inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>-RD) problem as a natural generalization of the RD problem whose solutions are <inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>-errors (note that the RD problem is actually a special <inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>-RD problem with <inline-formula> <tex-math>$\\ell =1$ </tex-math></inline-formula>). We adapt the typical attacks on the RD problem to the <inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>-RD problem, and find that the blockwise structure does not ease the problem too much: the <inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>-RD problem is still exponentially hard for appropriate choices of <inline-formula> <tex-math>$\\ell \\gt 1$ </tex-math></inline-formula>. Second, we introduce the blockwise LRPC (<inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>-LRPC) codes as generalizations of the LPRC codes whose parity-check matrices can be divided into <inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula> sub-matrices with direct-sum supports, i.e., the intersection of two subspaces generated by the entries of any two sub-matrices is a null space, and investigate the decoding algorithms for <inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>-errors. We find that the gain of using <inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>-errors in decoding capacity outweighs the complexity loss in solving the <inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>-RD problem, which makes it possible to design more efficient rank-based cryptosystems with flexible choices of parameters. As an application, we show that the two rank-based cryptosystems submitted to the NIST PQC competition, namely, RQC and ROLLO, can be greatly improved by using the ideal variants of the <inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>-RD problem and <inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>-LRPC codes. Concretely, for 128-bit security, our RQC has total public key and ciphertext sizes of 2.5 KB, which is not only about 50% more compact than the original RQC, but also smaller than the NIST Round 4 code-based submissions HQC, BIKE, and Classic McEliece.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 6","pages":"4806-4838"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blockwise Rank Decoding Problem and LRPC Codes: Cryptosystems With Smaller Sizes\",\"authors\":\"Yongcheng Song;Jiang Zhang;Xinyi Huang;Wei Wu\",\"doi\":\"10.1109/TIT.2025.3555075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we initiate the study of the Rank Decoding (RD) problem and Low Rank Parity Check (LRPC) codes with blockwise structure in rank-based cryptosystems. First, we introduce the blockwise errors (<inline-formula> <tex-math>$\\\\ell $ </tex-math></inline-formula>-errors) where each error consists of <inline-formula> <tex-math>$\\\\ell $ </tex-math></inline-formula> blocks of coordinates with direct-sum supports, and define the blockwise RD (<inline-formula> <tex-math>$\\\\ell $ </tex-math></inline-formula>-RD) problem as a natural generalization of the RD problem whose solutions are <inline-formula> <tex-math>$\\\\ell $ </tex-math></inline-formula>-errors (note that the RD problem is actually a special <inline-formula> <tex-math>$\\\\ell $ </tex-math></inline-formula>-RD problem with <inline-formula> <tex-math>$\\\\ell =1$ </tex-math></inline-formula>). We adapt the typical attacks on the RD problem to the <inline-formula> <tex-math>$\\\\ell $ </tex-math></inline-formula>-RD problem, and find that the blockwise structure does not ease the problem too much: the <inline-formula> <tex-math>$\\\\ell $ </tex-math></inline-formula>-RD problem is still exponentially hard for appropriate choices of <inline-formula> <tex-math>$\\\\ell \\\\gt 1$ </tex-math></inline-formula>. Second, we introduce the blockwise LRPC (<inline-formula> <tex-math>$\\\\ell $ </tex-math></inline-formula>-LRPC) codes as generalizations of the LPRC codes whose parity-check matrices can be divided into <inline-formula> <tex-math>$\\\\ell $ </tex-math></inline-formula> sub-matrices with direct-sum supports, i.e., the intersection of two subspaces generated by the entries of any two sub-matrices is a null space, and investigate the decoding algorithms for <inline-formula> <tex-math>$\\\\ell $ </tex-math></inline-formula>-errors. We find that the gain of using <inline-formula> <tex-math>$\\\\ell $ </tex-math></inline-formula>-errors in decoding capacity outweighs the complexity loss in solving the <inline-formula> <tex-math>$\\\\ell $ </tex-math></inline-formula>-RD problem, which makes it possible to design more efficient rank-based cryptosystems with flexible choices of parameters. As an application, we show that the two rank-based cryptosystems submitted to the NIST PQC competition, namely, RQC and ROLLO, can be greatly improved by using the ideal variants of the <inline-formula> <tex-math>$\\\\ell $ </tex-math></inline-formula>-RD problem and <inline-formula> <tex-math>$\\\\ell $ </tex-math></inline-formula>-LRPC codes. Concretely, for 128-bit security, our RQC has total public key and ciphertext sizes of 2.5 KB, which is not only about 50% more compact than the original RQC, but also smaller than the NIST Round 4 code-based submissions HQC, BIKE, and Classic McEliece.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 6\",\"pages\":\"4806-4838\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10942466/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10942466/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于秩的密码系统中具有块结构的秩解码(RD)问题和低秩奇偶校验(LRPC)码。首先,我们引入块错误($\ well $ -errors),其中每个错误由具有直接和支持的$\ well $坐标块组成,并将块RD ($\ well $ -RD)问题定义为RD问题的自然推广,其解为$\ well $ -errors(注意,RD问题实际上是一个特殊的$\ well $ -RD问题,其中$\ well =1$)。我们将针对RD问题的典型攻击方法应用于$\ well $ -RD问题,并发现块结构并不能太好地缓解问题:$\ well $ -RD问题对于$\ well \gt 1$的适当选择仍然是指数级困难的。其次,我们引入了块LRPC ($\ well $ -LRPC)码作为LPRC码的推广,LPRC码的奇偶校验矩阵可以分为具有直接和支持的$\ well $子矩阵,即由任意两个子矩阵的条目生成的两个子空间的交集是零空间,并研究了$\ well $ -errors的解码算法。我们发现使用$\ well $ -errors在解码容量上的收益超过了解决$\ well $ -RD问题时的复杂性损失,这使得设计具有灵活参数选择的更有效的基于秩的密码系统成为可能。作为一个应用,我们证明了提交给NIST PQC竞赛的两个基于秩的密码系统,即RQC和ROLLO,可以通过使用$\ well $ -RD问题和$\ well $ -LRPC代码的理想变体得到极大的改进。具体来说,对于128位安全性,我们的RQC的总公钥和密文大小为2.5 KB,不仅比原来的RQC紧凑约50%,而且比NIST第4轮基于代码的提交HQC, BIKE和Classic McEliece要小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blockwise Rank Decoding Problem and LRPC Codes: Cryptosystems With Smaller Sizes
In this paper, we initiate the study of the Rank Decoding (RD) problem and Low Rank Parity Check (LRPC) codes with blockwise structure in rank-based cryptosystems. First, we introduce the blockwise errors ( $\ell $ -errors) where each error consists of $\ell $ blocks of coordinates with direct-sum supports, and define the blockwise RD ( $\ell $ -RD) problem as a natural generalization of the RD problem whose solutions are $\ell $ -errors (note that the RD problem is actually a special $\ell $ -RD problem with $\ell =1$ ). We adapt the typical attacks on the RD problem to the $\ell $ -RD problem, and find that the blockwise structure does not ease the problem too much: the $\ell $ -RD problem is still exponentially hard for appropriate choices of $\ell \gt 1$ . Second, we introduce the blockwise LRPC ( $\ell $ -LRPC) codes as generalizations of the LPRC codes whose parity-check matrices can be divided into $\ell $ sub-matrices with direct-sum supports, i.e., the intersection of two subspaces generated by the entries of any two sub-matrices is a null space, and investigate the decoding algorithms for $\ell $ -errors. We find that the gain of using $\ell $ -errors in decoding capacity outweighs the complexity loss in solving the $\ell $ -RD problem, which makes it possible to design more efficient rank-based cryptosystems with flexible choices of parameters. As an application, we show that the two rank-based cryptosystems submitted to the NIST PQC competition, namely, RQC and ROLLO, can be greatly improved by using the ideal variants of the $\ell $ -RD problem and $\ell $ -LRPC codes. Concretely, for 128-bit security, our RQC has total public key and ciphertext sizes of 2.5 KB, which is not only about 50% more compact than the original RQC, but also smaller than the NIST Round 4 code-based submissions HQC, BIKE, and Classic McEliece.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信