SNOW系列流密码xor版本抗快速相关攻击的可证明安全性评估

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sudong Ma;Chenhui Jin;Xinxin Gong;Senpeng Wang;Ting Cui;Lin Ding;Jie Guan
{"title":"SNOW系列流密码xor版本抗快速相关攻击的可证明安全性评估","authors":"Sudong Ma;Chenhui Jin;Xinxin Gong;Senpeng Wang;Ting Cui;Lin Ding;Jie Guan","doi":"10.1109/TIT.2025.3565463","DOIUrl":null,"url":null,"abstract":"Fast correlation attack is one of the most powerful attack methods for LFSR-based stream ciphers, and the primary problem of the attack is to construct the linear approximations with great absolute correlations. For some stream ciphers with complex structures of linear approximations, the search for the maximum absolute correlation of linear approximations has always been a difficult problem because of the extremely high amount of masks that need to be searched. In this paper, an analysis method for searching maximum absolute correlation based on the linear mask structure is developed, including the filtering technology based on mask propagation trail, a structural characteristic of linear approximations of linear transformations with fewer active bytes, and linear approximation equivalence theorem of composite function composed of the parallel identical S-boxes and linear transformation. These methods efficiently reduce the exhaustive time complexity of the masks. As applications, this paper proves that the suprema of absolute correlations of all the linear approximations for the five XOR-versions of SNOW family stream ciphers (i.e., SNOW <inline-formula> <tex-math>$2.0_{\\oplus }$ </tex-math></inline-formula>, SNOW <inline-formula> <tex-math>$\\text{3G}_{\\oplus }$ </tex-math></inline-formula>, SNOW-<inline-formula> <tex-math>$\\text{V}_{\\oplus }$ </tex-math></inline-formula>, SNOW-<inline-formula> <tex-math>$\\text{Vi}_{\\oplus }$ </tex-math></inline-formula>, SNOW <inline-formula> <tex-math>$\\text{5G}_{\\oplus }$ </tex-math></inline-formula>) are <inline-formula> <tex-math>${2^{ - 9}}/{2^{ - 15.893}}/{2^{ - 37.964}}/{2^{ - 37.964}}/{2^{ - 37.964}}$ </tex-math></inline-formula>. The exhaustive time complexity of the masks can be reduced from <inline-formula> <tex-math>$O({2^{32}})/O({2^{96}})/O({2^{384}})/O({2^{384}})/O({2^{384}})$ </tex-math></inline-formula> to <inline-formula> <tex-math>$O({2^{24}})/O({2^{31.98}})/O({2^{39.98}})/O({2^{39.98}})/~O({2^{39.98}})$ </tex-math></inline-formula>, respectively. Furthermore, we give the provable security evaluations of the five ciphers against fast correlation attacks under the success probability of 0.99 for the known fast correlation attack method. For SNOW-<inline-formula> <tex-math>$\\text{V}_{\\oplus }$ </tex-math></inline-formula>/SNOW-<inline-formula> <tex-math>$\\text{Vi}_{\\oplus }$ </tex-math></inline-formula>/SNOW <inline-formula> <tex-math>$\\text{5G}_{\\oplus }$ </tex-math></inline-formula>, the time/data/memory complexity of the optimal fast correlation attacks are all <inline-formula> <tex-math>$O(2^{227.54})/O(2^{227.72})/O(2^{227.72})$ </tex-math></inline-formula>. The results show that SNOW-<inline-formula> <tex-math>$\\text{V}_{\\oplus }$ </tex-math></inline-formula>/SNOW-<inline-formula> <tex-math>$\\text{Vi}_{\\oplus }$ </tex-math></inline-formula>/SNOW <inline-formula> <tex-math>$\\text{5G}_{\\oplus }$ </tex-math></inline-formula> cannot guarantee the claimed 256-bit key security for the known fast correlation attack methods if we ignore the design constraint that the maximum length of keystream for a single pair of key and IV is <inline-formula> <tex-math>$2^{64}$ </tex-math></inline-formula>. For SNOW <inline-formula> <tex-math>$2.0_{\\oplus }$ </tex-math></inline-formula> and SNOW <inline-formula> <tex-math>$\\text{3G}_{\\oplus }$ </tex-math></inline-formula>, the time/data/memory complexity of the optimal fast correlation attacks are <inline-formula> <tex-math>$O({2^{151.94}})/O({2^{151.35}})/O({2^{151.35}})$ </tex-math></inline-formula> and <inline-formula> <tex-math>$O(2^{165.91})/O(2^{165.43})/O(2^{165.43})$ </tex-math></inline-formula>, respectively. The results show that both SNOW <inline-formula> <tex-math>$2.0_{\\oplus }$ </tex-math></inline-formula> and SNOW <inline-formula> <tex-math>$\\text{3G}_{\\oplus }$ </tex-math></inline-formula> can guarantee the claimed 128-bit key security for the known fast correlation attack methods. In addition, this paper also discusses that the existing fast correlation attacks based on multiple linear approximations are invalid for these five ciphers.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 6","pages":"4035-4054"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Provable Security Evaluations of XOR-Versions of SNOW Family Stream Ciphers Against Fast Correlation Attacks\",\"authors\":\"Sudong Ma;Chenhui Jin;Xinxin Gong;Senpeng Wang;Ting Cui;Lin Ding;Jie Guan\",\"doi\":\"10.1109/TIT.2025.3565463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast correlation attack is one of the most powerful attack methods for LFSR-based stream ciphers, and the primary problem of the attack is to construct the linear approximations with great absolute correlations. For some stream ciphers with complex structures of linear approximations, the search for the maximum absolute correlation of linear approximations has always been a difficult problem because of the extremely high amount of masks that need to be searched. In this paper, an analysis method for searching maximum absolute correlation based on the linear mask structure is developed, including the filtering technology based on mask propagation trail, a structural characteristic of linear approximations of linear transformations with fewer active bytes, and linear approximation equivalence theorem of composite function composed of the parallel identical S-boxes and linear transformation. These methods efficiently reduce the exhaustive time complexity of the masks. As applications, this paper proves that the suprema of absolute correlations of all the linear approximations for the five XOR-versions of SNOW family stream ciphers (i.e., SNOW <inline-formula> <tex-math>$2.0_{\\\\oplus }$ </tex-math></inline-formula>, SNOW <inline-formula> <tex-math>$\\\\text{3G}_{\\\\oplus }$ </tex-math></inline-formula>, SNOW-<inline-formula> <tex-math>$\\\\text{V}_{\\\\oplus }$ </tex-math></inline-formula>, SNOW-<inline-formula> <tex-math>$\\\\text{Vi}_{\\\\oplus }$ </tex-math></inline-formula>, SNOW <inline-formula> <tex-math>$\\\\text{5G}_{\\\\oplus }$ </tex-math></inline-formula>) are <inline-formula> <tex-math>${2^{ - 9}}/{2^{ - 15.893}}/{2^{ - 37.964}}/{2^{ - 37.964}}/{2^{ - 37.964}}$ </tex-math></inline-formula>. The exhaustive time complexity of the masks can be reduced from <inline-formula> <tex-math>$O({2^{32}})/O({2^{96}})/O({2^{384}})/O({2^{384}})/O({2^{384}})$ </tex-math></inline-formula> to <inline-formula> <tex-math>$O({2^{24}})/O({2^{31.98}})/O({2^{39.98}})/O({2^{39.98}})/~O({2^{39.98}})$ </tex-math></inline-formula>, respectively. Furthermore, we give the provable security evaluations of the five ciphers against fast correlation attacks under the success probability of 0.99 for the known fast correlation attack method. For SNOW-<inline-formula> <tex-math>$\\\\text{V}_{\\\\oplus }$ </tex-math></inline-formula>/SNOW-<inline-formula> <tex-math>$\\\\text{Vi}_{\\\\oplus }$ </tex-math></inline-formula>/SNOW <inline-formula> <tex-math>$\\\\text{5G}_{\\\\oplus }$ </tex-math></inline-formula>, the time/data/memory complexity of the optimal fast correlation attacks are all <inline-formula> <tex-math>$O(2^{227.54})/O(2^{227.72})/O(2^{227.72})$ </tex-math></inline-formula>. The results show that SNOW-<inline-formula> <tex-math>$\\\\text{V}_{\\\\oplus }$ </tex-math></inline-formula>/SNOW-<inline-formula> <tex-math>$\\\\text{Vi}_{\\\\oplus }$ </tex-math></inline-formula>/SNOW <inline-formula> <tex-math>$\\\\text{5G}_{\\\\oplus }$ </tex-math></inline-formula> cannot guarantee the claimed 256-bit key security for the known fast correlation attack methods if we ignore the design constraint that the maximum length of keystream for a single pair of key and IV is <inline-formula> <tex-math>$2^{64}$ </tex-math></inline-formula>. For SNOW <inline-formula> <tex-math>$2.0_{\\\\oplus }$ </tex-math></inline-formula> and SNOW <inline-formula> <tex-math>$\\\\text{3G}_{\\\\oplus }$ </tex-math></inline-formula>, the time/data/memory complexity of the optimal fast correlation attacks are <inline-formula> <tex-math>$O({2^{151.94}})/O({2^{151.35}})/O({2^{151.35}})$ </tex-math></inline-formula> and <inline-formula> <tex-math>$O(2^{165.91})/O(2^{165.43})/O(2^{165.43})$ </tex-math></inline-formula>, respectively. The results show that both SNOW <inline-formula> <tex-math>$2.0_{\\\\oplus }$ </tex-math></inline-formula> and SNOW <inline-formula> <tex-math>$\\\\text{3G}_{\\\\oplus }$ </tex-math></inline-formula> can guarantee the claimed 128-bit key security for the known fast correlation attack methods. In addition, this paper also discusses that the existing fast correlation attacks based on multiple linear approximations are invalid for these five ciphers.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 6\",\"pages\":\"4035-4054\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10980226/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10980226/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

快速相关攻击是针对基于lfsr的流密码最强大的攻击方法之一,其主要问题是构造具有极大绝对相关性的线性逼近。对于一些具有复杂线性近似结构的流密码来说,由于需要搜索的掩码量非常大,因此寻找线性近似的最大绝对相关性一直是一个难题。本文提出了一种基于线性掩模结构的搜索最大绝对相关性的分析方法,包括基于掩模传播轨迹的滤波技术、有效字节数较少的线性变换线性逼近的结构特性、由平行相同s盒和线性变换组成的复合函数的线性逼近等价定理。这些方法有效地降低了掩模的穷举时间复杂度。作为应用,本文证明了SNOW系列流密码的5个xor版本(即SNOW $2.0_{\oplus}$、SNOW $\text{3G}_{\oplus}$、SNOW- $\text{V}_{\oplus}$、SNOW- $\text{Vi}_{\oplus}$、SNOW $\text{5G}_{\oplus}$)的所有线性逼近的绝对相关的极值为${2^{- 9}}/{2^{- 15.893}}/{2^{- 37.964}}/{2^{- 37.964}}/{2^{- 37.964}}/{2^{- 37.964}}}。详尽的时间复杂度的面具可以减少从O ({2 ^ {32}}) / O ({2 ^ {96}}) / O ({2 ^ {384}}) / O ({2 ^ {384}}) / O ({2 ^ {384}}), O美元({2 ^ {24}})/ O ({2 ^ {31.98}}) / O ({2 ^ {39.98}}) / O ({2 ^ {39.98}}) / ~ O({2 ^{39.98}}),美元。在已知的快速相关攻击方法成功概率为0.99的情况下,给出了五种密码对快速相关攻击的可证明安全性评价。对于SNOW- $\text{V}_{\oplus}$ /SNOW- $\text{Vi}_{\oplus}$ /SNOW $\text{5G}_{\oplus}$,最优快速相关攻击的时间/数据/内存复杂度均为$O(2^{227.54})/O(2^{227.72})/O(2^{227.72})$。结果表明,对于已知的快速相关攻击方法,如果忽略单对密钥和IV的最大密钥流长度为$2^{64}$的设计约束,SNOW- $ $\text{V}_{\oplus}$ /SNOW- $ $\text{Vi}_{\oplus}$ /SNOW $\text{5G}_{\oplus}$不能保证所宣称的256位密钥安全性。对于SNOW $2.0_{\oplus}$和SNOW $\text{3G}_{\oplus}$,最优快速相关攻击的时间/数据/内存复杂度分别为$O({2^{151.94}})/O({2^{151.35}})/O({2^{151.35}})$和$O(2^{165.91})/O(2^{165.43}) $。结果表明,对于已知的快速相关攻击方法,SNOW $2.0_{\oplus}$和SNOW $\text{3G}_{\oplus}$都能保证所宣称的128位密钥安全性。此外,本文还讨论了现有的基于多重线性逼近的快速相关攻击对这五种密码是无效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Provable Security Evaluations of XOR-Versions of SNOW Family Stream Ciphers Against Fast Correlation Attacks
Fast correlation attack is one of the most powerful attack methods for LFSR-based stream ciphers, and the primary problem of the attack is to construct the linear approximations with great absolute correlations. For some stream ciphers with complex structures of linear approximations, the search for the maximum absolute correlation of linear approximations has always been a difficult problem because of the extremely high amount of masks that need to be searched. In this paper, an analysis method for searching maximum absolute correlation based on the linear mask structure is developed, including the filtering technology based on mask propagation trail, a structural characteristic of linear approximations of linear transformations with fewer active bytes, and linear approximation equivalence theorem of composite function composed of the parallel identical S-boxes and linear transformation. These methods efficiently reduce the exhaustive time complexity of the masks. As applications, this paper proves that the suprema of absolute correlations of all the linear approximations for the five XOR-versions of SNOW family stream ciphers (i.e., SNOW $2.0_{\oplus }$ , SNOW $\text{3G}_{\oplus }$ , SNOW- $\text{V}_{\oplus }$ , SNOW- $\text{Vi}_{\oplus }$ , SNOW $\text{5G}_{\oplus }$ ) are ${2^{ - 9}}/{2^{ - 15.893}}/{2^{ - 37.964}}/{2^{ - 37.964}}/{2^{ - 37.964}}$ . The exhaustive time complexity of the masks can be reduced from $O({2^{32}})/O({2^{96}})/O({2^{384}})/O({2^{384}})/O({2^{384}})$ to $O({2^{24}})/O({2^{31.98}})/O({2^{39.98}})/O({2^{39.98}})/~O({2^{39.98}})$ , respectively. Furthermore, we give the provable security evaluations of the five ciphers against fast correlation attacks under the success probability of 0.99 for the known fast correlation attack method. For SNOW- $\text{V}_{\oplus }$ /SNOW- $\text{Vi}_{\oplus }$ /SNOW $\text{5G}_{\oplus }$ , the time/data/memory complexity of the optimal fast correlation attacks are all $O(2^{227.54})/O(2^{227.72})/O(2^{227.72})$ . The results show that SNOW- $\text{V}_{\oplus }$ /SNOW- $\text{Vi}_{\oplus }$ /SNOW $\text{5G}_{\oplus }$ cannot guarantee the claimed 256-bit key security for the known fast correlation attack methods if we ignore the design constraint that the maximum length of keystream for a single pair of key and IV is $2^{64}$ . For SNOW $2.0_{\oplus }$ and SNOW $\text{3G}_{\oplus }$ , the time/data/memory complexity of the optimal fast correlation attacks are $O({2^{151.94}})/O({2^{151.35}})/O({2^{151.35}})$ and $O(2^{165.91})/O(2^{165.43})/O(2^{165.43})$ , respectively. The results show that both SNOW $2.0_{\oplus }$ and SNOW $\text{3G}_{\oplus }$ can guarantee the claimed 128-bit key security for the known fast correlation attack methods. In addition, this paper also discusses that the existing fast correlation attacks based on multiple linear approximations are invalid for these five ciphers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信