Zihui Wang , Yanbing Jia , Xiaoqing Han , Peng Wang , Jiajie Liu
{"title":"基于深度学习的分布式鲁棒联合机会约束配电网光伏托管容量评估","authors":"Zihui Wang , Yanbing Jia , Xiaoqing Han , Peng Wang , Jiajie Liu","doi":"10.1016/j.apenergy.2025.126130","DOIUrl":null,"url":null,"abstract":"<div><div>As distributed photovoltaic (PV) penetration in distribution networks (DNs) is increasing, it is essential to assess the PV hosting capacity (PVHC) to ensure the safe operation of DNs. This paper proposes a data-driven distributionally robust joint chance constrained (DRJCC) distribution networks PVHC assessment framework. Firstly, the spatiotemporal attention, projection, supervision, and Transformer architecture-based generative adversarial blocks are introduced to develop an augmented time series generative adversarial network (ATS-GAN), which, by integrating both supervised and unsupervised learning during the joint training process, better captures the spatiotemporal characteristics of PV and load power. Subsequently, leveraging the ATS-GAN, a Wasserstein metrics-based ambiguity set of PV and load power probability distributions is constructed, centered on the distributions induced by the generator neural network. Secondly, the DRJCC PVHC assessment model is proposed. A combination of the Bonferroni inequality and conditional value-at-risk approximation is adopted to transform the multivariate DRJCC model into a tractable conic formulation for efficient computation. Numerical results demonstrate that the proposed method effectively captures the spatiotemporal characteristics and uncertainties of multivariate distributions under multiple constraints, significantly reducing the conservatism typically associated with distributionally robust individual chance constraints.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"394 ","pages":"Article 126130"},"PeriodicalIF":10.1000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based distributionally robust joint chance constrained distribution networks PV hosting capacity assessment\",\"authors\":\"Zihui Wang , Yanbing Jia , Xiaoqing Han , Peng Wang , Jiajie Liu\",\"doi\":\"10.1016/j.apenergy.2025.126130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As distributed photovoltaic (PV) penetration in distribution networks (DNs) is increasing, it is essential to assess the PV hosting capacity (PVHC) to ensure the safe operation of DNs. This paper proposes a data-driven distributionally robust joint chance constrained (DRJCC) distribution networks PVHC assessment framework. Firstly, the spatiotemporal attention, projection, supervision, and Transformer architecture-based generative adversarial blocks are introduced to develop an augmented time series generative adversarial network (ATS-GAN), which, by integrating both supervised and unsupervised learning during the joint training process, better captures the spatiotemporal characteristics of PV and load power. Subsequently, leveraging the ATS-GAN, a Wasserstein metrics-based ambiguity set of PV and load power probability distributions is constructed, centered on the distributions induced by the generator neural network. Secondly, the DRJCC PVHC assessment model is proposed. A combination of the Bonferroni inequality and conditional value-at-risk approximation is adopted to transform the multivariate DRJCC model into a tractable conic formulation for efficient computation. Numerical results demonstrate that the proposed method effectively captures the spatiotemporal characteristics and uncertainties of multivariate distributions under multiple constraints, significantly reducing the conservatism typically associated with distributionally robust individual chance constraints.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"394 \",\"pages\":\"Article 126130\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925008608\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925008608","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Deep learning-based distributionally robust joint chance constrained distribution networks PV hosting capacity assessment
As distributed photovoltaic (PV) penetration in distribution networks (DNs) is increasing, it is essential to assess the PV hosting capacity (PVHC) to ensure the safe operation of DNs. This paper proposes a data-driven distributionally robust joint chance constrained (DRJCC) distribution networks PVHC assessment framework. Firstly, the spatiotemporal attention, projection, supervision, and Transformer architecture-based generative adversarial blocks are introduced to develop an augmented time series generative adversarial network (ATS-GAN), which, by integrating both supervised and unsupervised learning during the joint training process, better captures the spatiotemporal characteristics of PV and load power. Subsequently, leveraging the ATS-GAN, a Wasserstein metrics-based ambiguity set of PV and load power probability distributions is constructed, centered on the distributions induced by the generator neural network. Secondly, the DRJCC PVHC assessment model is proposed. A combination of the Bonferroni inequality and conditional value-at-risk approximation is adopted to transform the multivariate DRJCC model into a tractable conic formulation for efficient computation. Numerical results demonstrate that the proposed method effectively captures the spatiotemporal characteristics and uncertainties of multivariate distributions under multiple constraints, significantly reducing the conservatism typically associated with distributionally robust individual chance constraints.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.