分子光力学系统中的非互易纠缠

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
E. Kongkui Berinyuy , Jia-Xin Peng , Amjad Sohail , P. Djorwé , A.-H. Abdel-Aty , N. Alessa , K.S. Nisar , S.G. Nana Engo
{"title":"分子光力学系统中的非互易纠缠","authors":"E. Kongkui Berinyuy ,&nbsp;Jia-Xin Peng ,&nbsp;Amjad Sohail ,&nbsp;P. Djorwé ,&nbsp;A.-H. Abdel-Aty ,&nbsp;N. Alessa ,&nbsp;K.S. Nisar ,&nbsp;S.G. Nana Engo","doi":"10.1016/j.physb.2025.417313","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a theoretical scheme to generate nonreciprocal bipartite entanglement between a cavity mode and vibrational modes in a molecular cavity optomechanical system. Our system consists of <span><math><mi>N</mi></math></span> molecules placed inside a spinning whispering-gallery-mode (WGM) resonator. The vibrational modes of these molecules are coupled to the WGM resonator mode (which is analogous to a plasmonic cavity) and the resonator is also coupled to an auxiliary optical cavity. We demonstrate that nonreciprocal photon-vibration entanglement and nonreciprocal vibration–vibration entanglement can be generated in this system, even at high temperatures. These nonreciprocal entanglements arise due to the Sagnac–Fizeau effect induced by the spinning WGM resonator. We find that spinning the WGM resonator in the counter-clockwise (CCW) direction enhances both types of nonreciprocal entanglement, especially under blue-detuned driving of the optical cavity mode. Furthermore, we show that vibration–vibration entanglement can be significantly enhanced by increasing the number of molecules. Our findings have potential applications in quantum information transmission and in the development of nonreciprocal quantum devices.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"713 ","pages":"Article 417313"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonreciprocal entanglement in a molecular optomechanical system\",\"authors\":\"E. Kongkui Berinyuy ,&nbsp;Jia-Xin Peng ,&nbsp;Amjad Sohail ,&nbsp;P. Djorwé ,&nbsp;A.-H. Abdel-Aty ,&nbsp;N. Alessa ,&nbsp;K.S. Nisar ,&nbsp;S.G. Nana Engo\",\"doi\":\"10.1016/j.physb.2025.417313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a theoretical scheme to generate nonreciprocal bipartite entanglement between a cavity mode and vibrational modes in a molecular cavity optomechanical system. Our system consists of <span><math><mi>N</mi></math></span> molecules placed inside a spinning whispering-gallery-mode (WGM) resonator. The vibrational modes of these molecules are coupled to the WGM resonator mode (which is analogous to a plasmonic cavity) and the resonator is also coupled to an auxiliary optical cavity. We demonstrate that nonreciprocal photon-vibration entanglement and nonreciprocal vibration–vibration entanglement can be generated in this system, even at high temperatures. These nonreciprocal entanglements arise due to the Sagnac–Fizeau effect induced by the spinning WGM resonator. We find that spinning the WGM resonator in the counter-clockwise (CCW) direction enhances both types of nonreciprocal entanglement, especially under blue-detuned driving of the optical cavity mode. Furthermore, we show that vibration–vibration entanglement can be significantly enhanced by increasing the number of molecules. Our findings have potential applications in quantum information transmission and in the development of nonreciprocal quantum devices.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"713 \",\"pages\":\"Article 417313\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625004302\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625004302","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种在分子腔光力学系统中产生腔模和振动模之间非互易二部纠缠的理论方案。我们的系统由放置在旋转低语走廊模式(WGM)谐振器中的N个分子组成。这些分子的振动模式耦合到WGM谐振器模式(类似于等离子体腔),并且谐振器也耦合到辅助光学腔。我们证明了即使在高温下,该系统也可以产生非倒易光子-振动纠缠和非倒易振动-振动纠缠。这些非互易纠缠是由自旋WGM谐振器引起的Sagnac-Fizeau效应引起的。我们发现沿逆时针方向旋转WGM谐振腔增强了这两种类型的非互易纠缠,特别是在光腔模式的蓝失谐驱动下。此外,我们还表明,增加分子数量可以显著增强振动-振动纠缠。我们的发现在量子信息传输和非互易量子器件的开发中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonreciprocal entanglement in a molecular optomechanical system
We propose a theoretical scheme to generate nonreciprocal bipartite entanglement between a cavity mode and vibrational modes in a molecular cavity optomechanical system. Our system consists of N molecules placed inside a spinning whispering-gallery-mode (WGM) resonator. The vibrational modes of these molecules are coupled to the WGM resonator mode (which is analogous to a plasmonic cavity) and the resonator is also coupled to an auxiliary optical cavity. We demonstrate that nonreciprocal photon-vibration entanglement and nonreciprocal vibration–vibration entanglement can be generated in this system, even at high temperatures. These nonreciprocal entanglements arise due to the Sagnac–Fizeau effect induced by the spinning WGM resonator. We find that spinning the WGM resonator in the counter-clockwise (CCW) direction enhances both types of nonreciprocal entanglement, especially under blue-detuned driving of the optical cavity mode. Furthermore, we show that vibration–vibration entanglement can be significantly enhanced by increasing the number of molecules. Our findings have potential applications in quantum information transmission and in the development of nonreciprocal quantum devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信