激光辅助磨削过程中碳化硅/铝复合材料亚表面损伤机理的分子模拟研究

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Tinghong Gao , Qi Li , Kejun Dong , Guiyang Liu , Wanjun Yan , Jin Huang , Han Song , Zhan zhang
{"title":"激光辅助磨削过程中碳化硅/铝复合材料亚表面损伤机理的分子模拟研究","authors":"Tinghong Gao ,&nbsp;Qi Li ,&nbsp;Kejun Dong ,&nbsp;Guiyang Liu ,&nbsp;Wanjun Yan ,&nbsp;Jin Huang ,&nbsp;Han Song ,&nbsp;Zhan zhang","doi":"10.1016/j.physb.2025.417394","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon carbide/aluminum (SiC/Al) composites are extensively utilized in applications requiring high temperatures, frequencies, power densities, and radiation resistance because of their exceptional physical and electronic properties. They exhibit high toughness, fatigue resistance, strength, and wear resistance as well as a low thermal expansion coefficient. This research investigates the behavior of SiC/Al composites when subjected to single-particle laser-assisted grinding through molecular dynamics simulations and probes the grinding force, stress distribution, subsurface damage mechanism and the dynamic characteristics of topologically close-packed (TCP). The primary objective is to provide theoretical support for optimizing SiC/Al parameters in ultraprecision grinding. The findings highlight the pivotal role of the laser power density in the damage progression of SiC/Al composites. With increasing laser power density, the temperature within the SiC region increases, promoting the crystalline–amorphous transition of the SiC composite. Compared to traditional grinding methods, laser-assisted grinding exhibits superior efficacy in reducing subsurface damage depth and reducing the grinding forces acting on the abrasive in all directions. Furthermore, the laser power density substantially influences the deformation characteristics, stress distribution, and grinding force on the workpiece surface during laser-assisted grinding. Applying optimal laser power density can substantially decrease SiC atom extrusion toward the Al side, thereby minimizing material damage and enhancing processing efficiency.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"713 ","pages":"Article 417394"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular simulation study of the subsurface damage mechanism of silicon carbide/aluminum composites during laser-assisted grinding\",\"authors\":\"Tinghong Gao ,&nbsp;Qi Li ,&nbsp;Kejun Dong ,&nbsp;Guiyang Liu ,&nbsp;Wanjun Yan ,&nbsp;Jin Huang ,&nbsp;Han Song ,&nbsp;Zhan zhang\",\"doi\":\"10.1016/j.physb.2025.417394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Silicon carbide/aluminum (SiC/Al) composites are extensively utilized in applications requiring high temperatures, frequencies, power densities, and radiation resistance because of their exceptional physical and electronic properties. They exhibit high toughness, fatigue resistance, strength, and wear resistance as well as a low thermal expansion coefficient. This research investigates the behavior of SiC/Al composites when subjected to single-particle laser-assisted grinding through molecular dynamics simulations and probes the grinding force, stress distribution, subsurface damage mechanism and the dynamic characteristics of topologically close-packed (TCP). The primary objective is to provide theoretical support for optimizing SiC/Al parameters in ultraprecision grinding. The findings highlight the pivotal role of the laser power density in the damage progression of SiC/Al composites. With increasing laser power density, the temperature within the SiC region increases, promoting the crystalline–amorphous transition of the SiC composite. Compared to traditional grinding methods, laser-assisted grinding exhibits superior efficacy in reducing subsurface damage depth and reducing the grinding forces acting on the abrasive in all directions. Furthermore, the laser power density substantially influences the deformation characteristics, stress distribution, and grinding force on the workpiece surface during laser-assisted grinding. Applying optimal laser power density can substantially decrease SiC atom extrusion toward the Al side, thereby minimizing material damage and enhancing processing efficiency.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"713 \",\"pages\":\"Article 417394\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625005113\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625005113","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

碳化硅/铝(SiC/Al)复合材料由于其优异的物理和电子性能,广泛应用于需要高温、频率、功率密度和耐辐射的应用中。它们具有高韧性,抗疲劳性,强度和耐磨性以及低热膨胀系数。本研究通过分子动力学模拟研究了SiC/Al复合材料在单颗粒激光辅助磨削下的行为,探讨了磨削力、应力分布、亚表面损伤机制以及拓扑紧密堆积(TCP)的动态特性。主要目的是为超精密磨削中SiC/Al参数的优化提供理论支持。研究结果强调了激光功率密度在SiC/Al复合材料损伤过程中的关键作用。随着激光功率密度的增加,SiC区域内温度升高,促进了SiC复合材料的晶态向非晶态转变。与传统磨削方法相比,激光辅助磨削在减小亚表面损伤深度和减小各方向作用在磨料上的磨削力方面表现出优越的效果。此外,激光功率密度对激光辅助磨削过程中工件表面的变形特性、应力分布和磨削力有很大影响。采用最佳的激光功率密度可以显著减少SiC原子向Al侧的挤压,从而最大限度地减少材料损伤,提高加工效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular simulation study of the subsurface damage mechanism of silicon carbide/aluminum composites during laser-assisted grinding
Silicon carbide/aluminum (SiC/Al) composites are extensively utilized in applications requiring high temperatures, frequencies, power densities, and radiation resistance because of their exceptional physical and electronic properties. They exhibit high toughness, fatigue resistance, strength, and wear resistance as well as a low thermal expansion coefficient. This research investigates the behavior of SiC/Al composites when subjected to single-particle laser-assisted grinding through molecular dynamics simulations and probes the grinding force, stress distribution, subsurface damage mechanism and the dynamic characteristics of topologically close-packed (TCP). The primary objective is to provide theoretical support for optimizing SiC/Al parameters in ultraprecision grinding. The findings highlight the pivotal role of the laser power density in the damage progression of SiC/Al composites. With increasing laser power density, the temperature within the SiC region increases, promoting the crystalline–amorphous transition of the SiC composite. Compared to traditional grinding methods, laser-assisted grinding exhibits superior efficacy in reducing subsurface damage depth and reducing the grinding forces acting on the abrasive in all directions. Furthermore, the laser power density substantially influences the deformation characteristics, stress distribution, and grinding force on the workpiece surface during laser-assisted grinding. Applying optimal laser power density can substantially decrease SiC atom extrusion toward the Al side, thereby minimizing material damage and enhancing processing efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信