固态照明用LiYGeO4: Pr3+红色荧光粉的光学性质和热稳定性

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Qin Lu , Hui Guo , Jing Xie , Weichao Huang , Dongni Wu
{"title":"固态照明用LiYGeO4: Pr3+红色荧光粉的光学性质和热稳定性","authors":"Qin Lu ,&nbsp;Hui Guo ,&nbsp;Jing Xie ,&nbsp;Weichao Huang ,&nbsp;Dongni Wu","doi":"10.1016/j.physb.2025.417390","DOIUrl":null,"url":null,"abstract":"<div><div>The red-emitting phosphor LiYGeO<sub>4</sub>: Pr<sup>3+</sup> was synthesized by a conventional high-temperature solid-state reaction. Various analytical techniques were employed to investigate its properties, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), photoluminescence spectroscopy, and afterglow decay measurements. Density functional theory (DFT) calculations were conducted to examine the energy band structure, density of states, and pressure-dependent optical properties. Under 480 nm excitation, LiYGeO<sub>4</sub>: Pr<sup>3+</sup> shows a broad emission band covering 500–660 nm, with the most intense red emission at 599 nm originating from the <sup>1</sup>D<sub>2</sub>→<sup>3</sup>H<sub>4</sub> transition of Pr<sup>3+</sup>. The luminescence intensity remained 65.56 % of its initial value at a temperature of 423 K. Fluorescence intensity ratio (FIR) analysis demonstrated excellent optical thermometric performance with a maximum relative sensitivity of 2.6 % K<sup>−1</sup> at 298 K. DFT calculations indicate that Pr<sup>3+</sup> doping narrows the bandgap of the host lattice and enhances electron transition probabilities. Moreover, the optical absorption coefficient shows pressure dependence, suggesting potential applications in pressure-tunable optoelectronic devices. These findings establish LiYGeO<sub>4</sub>: Pr<sup>3+</sup> as a promising candidate for blue-light-excited solid-state lighting and pressure-sensitive photonic applications.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"713 ","pages":"Article 417390"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical properties and thermal stability of LiYGeO4: Pr3+ red phosphor for solid-state lighting\",\"authors\":\"Qin Lu ,&nbsp;Hui Guo ,&nbsp;Jing Xie ,&nbsp;Weichao Huang ,&nbsp;Dongni Wu\",\"doi\":\"10.1016/j.physb.2025.417390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The red-emitting phosphor LiYGeO<sub>4</sub>: Pr<sup>3+</sup> was synthesized by a conventional high-temperature solid-state reaction. Various analytical techniques were employed to investigate its properties, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), photoluminescence spectroscopy, and afterglow decay measurements. Density functional theory (DFT) calculations were conducted to examine the energy band structure, density of states, and pressure-dependent optical properties. Under 480 nm excitation, LiYGeO<sub>4</sub>: Pr<sup>3+</sup> shows a broad emission band covering 500–660 nm, with the most intense red emission at 599 nm originating from the <sup>1</sup>D<sub>2</sub>→<sup>3</sup>H<sub>4</sub> transition of Pr<sup>3+</sup>. The luminescence intensity remained 65.56 % of its initial value at a temperature of 423 K. Fluorescence intensity ratio (FIR) analysis demonstrated excellent optical thermometric performance with a maximum relative sensitivity of 2.6 % K<sup>−1</sup> at 298 K. DFT calculations indicate that Pr<sup>3+</sup> doping narrows the bandgap of the host lattice and enhances electron transition probabilities. Moreover, the optical absorption coefficient shows pressure dependence, suggesting potential applications in pressure-tunable optoelectronic devices. These findings establish LiYGeO<sub>4</sub>: Pr<sup>3+</sup> as a promising candidate for blue-light-excited solid-state lighting and pressure-sensitive photonic applications.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"713 \",\"pages\":\"Article 417390\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625005071\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625005071","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

采用常规高温固相反应合成了红色荧光体LiYGeO4: Pr3+。利用扫描电子显微镜(SEM)、x射线光电子能谱(XPS)、电子顺磁共振(EPR)、光致发光光谱和余辉衰减测量等多种分析技术对其性能进行了研究。密度泛函理论(DFT)计算进行了检查的能带结构,状态密度和压力依赖的光学性质。在480 nm激发下,LiYGeO4: Pr3+呈现出500 ~ 660 nm的较宽发射带,其中599 nm处最强烈的红色发射来自Pr3+的1D2→3H4跃迁。在423 K温度下,发光强度保持在初始值的65.56%。荧光强度比(FIR)分析显示出优异的光学测温性能,在298 K时的最大相对灵敏度为2.6% K−1。DFT计算表明,Pr3+的掺杂缩小了主晶格的带隙,提高了电子跃迁概率。此外,光吸收系数表现出压力依赖性,表明在压力可调光电器件中的潜在应用。这些发现确立了LiYGeO4: Pr3+作为蓝光激发固态照明和压敏光子应用的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical properties and thermal stability of LiYGeO4: Pr3+ red phosphor for solid-state lighting
The red-emitting phosphor LiYGeO4: Pr3+ was synthesized by a conventional high-temperature solid-state reaction. Various analytical techniques were employed to investigate its properties, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), photoluminescence spectroscopy, and afterglow decay measurements. Density functional theory (DFT) calculations were conducted to examine the energy band structure, density of states, and pressure-dependent optical properties. Under 480 nm excitation, LiYGeO4: Pr3+ shows a broad emission band covering 500–660 nm, with the most intense red emission at 599 nm originating from the 1D23H4 transition of Pr3+. The luminescence intensity remained 65.56 % of its initial value at a temperature of 423 K. Fluorescence intensity ratio (FIR) analysis demonstrated excellent optical thermometric performance with a maximum relative sensitivity of 2.6 % K−1 at 298 K. DFT calculations indicate that Pr3+ doping narrows the bandgap of the host lattice and enhances electron transition probabilities. Moreover, the optical absorption coefficient shows pressure dependence, suggesting potential applications in pressure-tunable optoelectronic devices. These findings establish LiYGeO4: Pr3+ as a promising candidate for blue-light-excited solid-state lighting and pressure-sensitive photonic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信