{"title":"采用双resurfs技术降低饱和电流的1200V 4H-SiC横向mosfet的仿真研究","authors":"Lijuan Wu, Jiahong He, Zhipeng Shen, Gengbin Zhu, Qiqi Tang, Zongyang Yi, Guanglin Yang, Deqiang Yang","doi":"10.1016/j.micrna.2025.208218","DOIUrl":null,"url":null,"abstract":"<div><div>A 1200V 4H–SiC lateral double-diffused MOSFETs (LDMOS) with embedded auto-adjust JFET (AD-JEFT) and double-reduced surface fields technology is proposed. The AD-JEFT, as the conduction path of electrons from N+ source to the P-well channel, is embedded in P+ well. In the on-state, as the device is pressurized, the increase of depletion charge will reduce the effective channel width of AD-JFET. As a result, the potential barrier of the AD-JFET channel will increase rapidly, making it difficult for electrons to transfer and resulting in a reduction of the saturation current. Compared with the common LDMOS (C-LDMOS), the saturation current (<em>I</em><sub>dsat</sub>) of the proposed LDMOS with AD-JEFT (ADJ-LDMOS) is reduced by 53.3 %. Meanwhile, the short circuit capability is improved by 110.5 %. In addition, the top P-type region of ADJ-LDMOS is divided into a higher doped P-top region and a lower doped P-top2 region, which greatly improves the blocking ability. The breakdown voltage was increased by 21.9 % without increasing the specific on-resistance (<em>R</em><sub>on,sp</sub>).</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"205 ","pages":"Article 208218"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation study of a 1200V 4H–SiC lateral MOSFETs with Double-RESURFs technology for reducing saturation current\",\"authors\":\"Lijuan Wu, Jiahong He, Zhipeng Shen, Gengbin Zhu, Qiqi Tang, Zongyang Yi, Guanglin Yang, Deqiang Yang\",\"doi\":\"10.1016/j.micrna.2025.208218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A 1200V 4H–SiC lateral double-diffused MOSFETs (LDMOS) with embedded auto-adjust JFET (AD-JEFT) and double-reduced surface fields technology is proposed. The AD-JEFT, as the conduction path of electrons from N+ source to the P-well channel, is embedded in P+ well. In the on-state, as the device is pressurized, the increase of depletion charge will reduce the effective channel width of AD-JFET. As a result, the potential barrier of the AD-JFET channel will increase rapidly, making it difficult for electrons to transfer and resulting in a reduction of the saturation current. Compared with the common LDMOS (C-LDMOS), the saturation current (<em>I</em><sub>dsat</sub>) of the proposed LDMOS with AD-JEFT (ADJ-LDMOS) is reduced by 53.3 %. Meanwhile, the short circuit capability is improved by 110.5 %. In addition, the top P-type region of ADJ-LDMOS is divided into a higher doped P-top region and a lower doped P-top2 region, which greatly improves the blocking ability. The breakdown voltage was increased by 21.9 % without increasing the specific on-resistance (<em>R</em><sub>on,sp</sub>).</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"205 \",\"pages\":\"Article 208218\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325001475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Simulation study of a 1200V 4H–SiC lateral MOSFETs with Double-RESURFs technology for reducing saturation current
A 1200V 4H–SiC lateral double-diffused MOSFETs (LDMOS) with embedded auto-adjust JFET (AD-JEFT) and double-reduced surface fields technology is proposed. The AD-JEFT, as the conduction path of electrons from N+ source to the P-well channel, is embedded in P+ well. In the on-state, as the device is pressurized, the increase of depletion charge will reduce the effective channel width of AD-JFET. As a result, the potential barrier of the AD-JFET channel will increase rapidly, making it difficult for electrons to transfer and resulting in a reduction of the saturation current. Compared with the common LDMOS (C-LDMOS), the saturation current (Idsat) of the proposed LDMOS with AD-JEFT (ADJ-LDMOS) is reduced by 53.3 %. Meanwhile, the short circuit capability is improved by 110.5 %. In addition, the top P-type region of ADJ-LDMOS is divided into a higher doped P-top region and a lower doped P-top2 region, which greatly improves the blocking ability. The breakdown voltage was increased by 21.9 % without increasing the specific on-resistance (Ron,sp).