关于0 ≤ 2 − p ≪ 1的纯功率NLS基态线的渐近稳定性

IF 2.3 2区 数学 Q1 MATHEMATICS
Scipio Cuccagna , Masaya Maeda
{"title":"关于0 ≤ 2 − p ≪ 1的纯功率NLS基态线的渐近稳定性","authors":"Scipio Cuccagna ,&nbsp;Masaya Maeda","doi":"10.1016/j.jde.2025.113451","DOIUrl":null,"url":null,"abstract":"<div><div>We continue our series devoted, after references <span><span>[18]</span></span> and <span><span>[20]</span></span>, at proving the asymptotic stability of ground states of the pure power Nonlinear Schrödinger equation on the line. Here we assume some results on the spectrum of the linearization obtained computationally by Chang et al. <span><span>[9]</span></span> and then we explore the equation for exponents <span><math><mi>p</mi><mo>≤</mo><mn>2</mn></math></span> sufficiently close to 2. The ensuing loss of regularity of the nonlinearity requires new arguments.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"440 ","pages":"Article 113451"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the asymptotic stability on the line of ground states of the pure power NLS with 0 ≤ 2 − p ≪ 1\",\"authors\":\"Scipio Cuccagna ,&nbsp;Masaya Maeda\",\"doi\":\"10.1016/j.jde.2025.113451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We continue our series devoted, after references <span><span>[18]</span></span> and <span><span>[20]</span></span>, at proving the asymptotic stability of ground states of the pure power Nonlinear Schrödinger equation on the line. Here we assume some results on the spectrum of the linearization obtained computationally by Chang et al. <span><span>[9]</span></span> and then we explore the equation for exponents <span><math><mi>p</mi><mo>≤</mo><mn>2</mn></math></span> sufficiently close to 2. The ensuing loss of regularity of the nonlinearity requires new arguments.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"440 \",\"pages\":\"Article 113451\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625004784\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004784","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在参考文献[18]和[20]之后,我们继续我们的系列致力于证明在线上的纯功率非线性Schrödinger方程的基态的渐近稳定性。这里我们假设Chang et al.[9]计算得到的线性化谱的一些结果,然后我们探索指数p≤2足够接近2的方程。随之而来的非线性正则性的丧失需要新的论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the asymptotic stability on the line of ground states of the pure power NLS with 0 ≤ 2 − p ≪ 1
We continue our series devoted, after references [18] and [20], at proving the asymptotic stability of ground states of the pure power Nonlinear Schrödinger equation on the line. Here we assume some results on the spectrum of the linearization obtained computationally by Chang et al. [9] and then we explore the equation for exponents p2 sufficiently close to 2. The ensuing loss of regularity of the nonlinearity requires new arguments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信