基于松弛模型的亥姆霍兹方程柯西问题研究:正则化与分析

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Rongfang Gong , Xiaohui Liu , Catharine W.K. Lo , Gaocheng Yue
{"title":"基于松弛模型的亥姆霍兹方程柯西问题研究:正则化与分析","authors":"Rongfang Gong ,&nbsp;Xiaohui Liu ,&nbsp;Catharine W.K. Lo ,&nbsp;Gaocheng Yue","doi":"10.1016/j.apnum.2025.05.007","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a Cauchy problem of the Helmholtz equation of recovering both missing voltage and current on inaccessible boundary from Cauchy data measured on the remaining accessible boundary. With an introduction of a relaxation parameter, the Dirichlet boundary conditions are approximated by two Robin ones. Associated with two mixed boundary value problems, a regularized Kohn-Vogelius formulation is proposed. Compared to the existing work, weaker regularity is required on the Dirichlet data and no Dirichlet BVPs needs to be solved. This makes the proposed model simpler and more efficient in computation. The well-posedness analysis about the relaxation model and error estimates of the corresponding inverse problem are obtained. A series of theoretical results are established for the new reconstruction model. Several numerical examples are provided to show feasibility and effectiveness of the proposed method.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"216 ","pages":"Pages 140-163"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of Cauchy problem of the Helmholtz equation based on a relaxation model: Regularization and analysis\",\"authors\":\"Rongfang Gong ,&nbsp;Xiaohui Liu ,&nbsp;Catharine W.K. Lo ,&nbsp;Gaocheng Yue\",\"doi\":\"10.1016/j.apnum.2025.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider a Cauchy problem of the Helmholtz equation of recovering both missing voltage and current on inaccessible boundary from Cauchy data measured on the remaining accessible boundary. With an introduction of a relaxation parameter, the Dirichlet boundary conditions are approximated by two Robin ones. Associated with two mixed boundary value problems, a regularized Kohn-Vogelius formulation is proposed. Compared to the existing work, weaker regularity is required on the Dirichlet data and no Dirichlet BVPs needs to be solved. This makes the proposed model simpler and more efficient in computation. The well-posedness analysis about the relaxation model and error estimates of the corresponding inverse problem are obtained. A series of theoretical results are established for the new reconstruction model. Several numerical examples are provided to show feasibility and effectiveness of the proposed method.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"216 \",\"pages\":\"Pages 140-163\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927425001059\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001059","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一个柯西问题,即从剩余可达边界上测得的柯西数据中恢复不可达边界上缺失的电压和电流。引入松弛参数后,Dirichlet边界条件近似为两个Robin边界条件。结合两个混合边值问题,提出了一个正则化的Kohn-Vogelius公式。与已有的工作相比,对Dirichlet数据的正则性要求较弱,不需要求解Dirichlet bvp。这使得所提出的模型更简单,计算效率更高。给出了松弛模型的适定性分析和相应逆问题的误差估计。为新的重构模型建立了一系列的理论结果。算例表明了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of Cauchy problem of the Helmholtz equation based on a relaxation model: Regularization and analysis
In this paper, we consider a Cauchy problem of the Helmholtz equation of recovering both missing voltage and current on inaccessible boundary from Cauchy data measured on the remaining accessible boundary. With an introduction of a relaxation parameter, the Dirichlet boundary conditions are approximated by two Robin ones. Associated with two mixed boundary value problems, a regularized Kohn-Vogelius formulation is proposed. Compared to the existing work, weaker regularity is required on the Dirichlet data and no Dirichlet BVPs needs to be solved. This makes the proposed model simpler and more efficient in computation. The well-posedness analysis about the relaxation model and error estimates of the corresponding inverse problem are obtained. A series of theoretical results are established for the new reconstruction model. Several numerical examples are provided to show feasibility and effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信