彩虹的哈密顿性和光谱半径

IF 0.7 3区 数学 Q2 MATHEMATICS
Yuke Zhang , Edwin R. van Dam
{"title":"彩虹的哈密顿性和光谱半径","authors":"Yuke Zhang ,&nbsp;Edwin R. van Dam","doi":"10.1016/j.disc.2025.114600","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> be a family of graphs of order <em>n</em> with the same vertex set. A rainbow Hamiltonian cycle in <span><math><mi>G</mi></math></span> is a cycle that visits each vertex precisely once such that any two edges belong to different graphs of <span><math><mi>G</mi></math></span>. We show that if each <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> has more than <span><math><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span> edges, then <span><math><mi>G</mi></math></span> admits a rainbow Hamiltonian cycle and pose the problem of characterizing rainbow Hamiltonicity under the condition that all <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> have at least <span><math><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span> edges. Towards a solution of that problem, we give a sufficient condition for the existence of a rainbow Hamiltonian cycle in terms of the spectral radii of the graphs in <span><math><mi>G</mi></math></span> and completely characterize the corresponding extremal graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114600"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainbow Hamiltonicity and the spectral radius\",\"authors\":\"Yuke Zhang ,&nbsp;Edwin R. van Dam\",\"doi\":\"10.1016/j.disc.2025.114600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> be a family of graphs of order <em>n</em> with the same vertex set. A rainbow Hamiltonian cycle in <span><math><mi>G</mi></math></span> is a cycle that visits each vertex precisely once such that any two edges belong to different graphs of <span><math><mi>G</mi></math></span>. We show that if each <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> has more than <span><math><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span> edges, then <span><math><mi>G</mi></math></span> admits a rainbow Hamiltonian cycle and pose the problem of characterizing rainbow Hamiltonicity under the condition that all <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> have at least <span><math><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span> edges. Towards a solution of that problem, we give a sufficient condition for the existence of a rainbow Hamiltonian cycle in terms of the spectral radii of the graphs in <span><math><mi>G</mi></math></span> and completely characterize the corresponding extremal graphs.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 11\",\"pages\":\"Article 114600\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002080\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002080","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G={G1,…,Gn}是具有相同顶点集的n阶图族。G中的彩虹哈密顿循环是一个循环,该循环访问每个顶点一次,使得任意两条边属于G的不同图。我们证明了如果每个Gi有多于(n−12)+1条边,则G承认彩虹哈密顿循环,并提出了在所有Gi至少有(n−12)+1条边的条件下表征彩虹哈密顿性的问题。为了解决这一问题,我们用G中图的谱半径给出了彩虹哈密顿循环存在的充分条件,并完整地刻画了相应的极值图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rainbow Hamiltonicity and the spectral radius
Let G={G1,,Gn} be a family of graphs of order n with the same vertex set. A rainbow Hamiltonian cycle in G is a cycle that visits each vertex precisely once such that any two edges belong to different graphs of G. We show that if each Gi has more than (n12)+1 edges, then G admits a rainbow Hamiltonian cycle and pose the problem of characterizing rainbow Hamiltonicity under the condition that all Gi have at least (n12)+1 edges. Towards a solution of that problem, we give a sufficient condition for the existence of a rainbow Hamiltonian cycle in terms of the spectral radii of the graphs in G and completely characterize the corresponding extremal graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信