{"title":"彩虹的哈密顿性和光谱半径","authors":"Yuke Zhang , Edwin R. van Dam","doi":"10.1016/j.disc.2025.114600","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> be a family of graphs of order <em>n</em> with the same vertex set. A rainbow Hamiltonian cycle in <span><math><mi>G</mi></math></span> is a cycle that visits each vertex precisely once such that any two edges belong to different graphs of <span><math><mi>G</mi></math></span>. We show that if each <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> has more than <span><math><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span> edges, then <span><math><mi>G</mi></math></span> admits a rainbow Hamiltonian cycle and pose the problem of characterizing rainbow Hamiltonicity under the condition that all <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> have at least <span><math><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span> edges. Towards a solution of that problem, we give a sufficient condition for the existence of a rainbow Hamiltonian cycle in terms of the spectral radii of the graphs in <span><math><mi>G</mi></math></span> and completely characterize the corresponding extremal graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114600"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainbow Hamiltonicity and the spectral radius\",\"authors\":\"Yuke Zhang , Edwin R. van Dam\",\"doi\":\"10.1016/j.disc.2025.114600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> be a family of graphs of order <em>n</em> with the same vertex set. A rainbow Hamiltonian cycle in <span><math><mi>G</mi></math></span> is a cycle that visits each vertex precisely once such that any two edges belong to different graphs of <span><math><mi>G</mi></math></span>. We show that if each <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> has more than <span><math><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span> edges, then <span><math><mi>G</mi></math></span> admits a rainbow Hamiltonian cycle and pose the problem of characterizing rainbow Hamiltonicity under the condition that all <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> have at least <span><math><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span> edges. Towards a solution of that problem, we give a sufficient condition for the existence of a rainbow Hamiltonian cycle in terms of the spectral radii of the graphs in <span><math><mi>G</mi></math></span> and completely characterize the corresponding extremal graphs.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 11\",\"pages\":\"Article 114600\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002080\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002080","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let be a family of graphs of order n with the same vertex set. A rainbow Hamiltonian cycle in is a cycle that visits each vertex precisely once such that any two edges belong to different graphs of . We show that if each has more than edges, then admits a rainbow Hamiltonian cycle and pose the problem of characterizing rainbow Hamiltonicity under the condition that all have at least edges. Towards a solution of that problem, we give a sufficient condition for the existence of a rainbow Hamiltonian cycle in terms of the spectral radii of the graphs in and completely characterize the corresponding extremal graphs.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.