介孔Au/TiO2和Au/TiO2/MWCNT纳米复合材料的合成、光催化及光电性能

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Abdel Khaleq Mousa Alsmadi , Belal Salameh , Owrad Alshammari , Ali Bumajdad , Metwally Madkour
{"title":"介孔Au/TiO2和Au/TiO2/MWCNT纳米复合材料的合成、光催化及光电性能","authors":"Abdel Khaleq Mousa Alsmadi ,&nbsp;Belal Salameh ,&nbsp;Owrad Alshammari ,&nbsp;Ali Bumajdad ,&nbsp;Metwally Madkour","doi":"10.1016/j.jpcs.2025.112874","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the photocatalytic and photoelectric performance of ternary Au/TiO<sub>2</sub>/MWCNT nanocomposites. XRD, TEM, XPS, and UV–Vis analyses verify the effective dispersion of TiO<sub>2</sub> and Au nanoparticles within the MWCNT matrix. Under UV irradiation, the optimized Au/TiO<sub>2</sub>/MWCNT composite exhibits a substantial enhancement in the catalytic performance compared to pure TiO<sub>2</sub> nanoparticles. This enhancement stems from extended visible-light absorption, minimized electron-hole recombination, and effective charge transfer mechanisms facilitated by Au particles and MWCNTs. The optimized composite achieves a 2.7-fold increase in the methylene blue (MB) photo-degradation rate constant relative to pure TiO<sub>2</sub>, with 87 % MB degradation after 120 min of UV irradiation. Additionally, the photoelectric conversion efficiency of dye-sensitized solar cells increases from 1.26 % for pure TiO<sub>2</sub> to 3.37 % for the Au/TiO<sub>2</sub>/MWCNT composite. These improvements are attributed to enhanced interfacial charge transport, increased specific surface area, reduced band gap energy, and the plasmonic effect of Au particles. PL and EIS measurements support the proposed charge mechanism and confirm the improved carrier density in the Au/TiO<sub>2</sub>/MWCNT composites. These findings highlight the potential of Au/TiO<sub>2</sub>/MWCNT composites for advanced photocatalytic and photovoltaic applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"207 ","pages":"Article 112874"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, photocatalytic, and photoelectric performance of mesoporous Au/TiO2 and Au/TiO2/MWCNT nanocomposites\",\"authors\":\"Abdel Khaleq Mousa Alsmadi ,&nbsp;Belal Salameh ,&nbsp;Owrad Alshammari ,&nbsp;Ali Bumajdad ,&nbsp;Metwally Madkour\",\"doi\":\"10.1016/j.jpcs.2025.112874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the photocatalytic and photoelectric performance of ternary Au/TiO<sub>2</sub>/MWCNT nanocomposites. XRD, TEM, XPS, and UV–Vis analyses verify the effective dispersion of TiO<sub>2</sub> and Au nanoparticles within the MWCNT matrix. Under UV irradiation, the optimized Au/TiO<sub>2</sub>/MWCNT composite exhibits a substantial enhancement in the catalytic performance compared to pure TiO<sub>2</sub> nanoparticles. This enhancement stems from extended visible-light absorption, minimized electron-hole recombination, and effective charge transfer mechanisms facilitated by Au particles and MWCNTs. The optimized composite achieves a 2.7-fold increase in the methylene blue (MB) photo-degradation rate constant relative to pure TiO<sub>2</sub>, with 87 % MB degradation after 120 min of UV irradiation. Additionally, the photoelectric conversion efficiency of dye-sensitized solar cells increases from 1.26 % for pure TiO<sub>2</sub> to 3.37 % for the Au/TiO<sub>2</sub>/MWCNT composite. These improvements are attributed to enhanced interfacial charge transport, increased specific surface area, reduced band gap energy, and the plasmonic effect of Au particles. PL and EIS measurements support the proposed charge mechanism and confirm the improved carrier density in the Au/TiO<sub>2</sub>/MWCNT composites. These findings highlight the potential of Au/TiO<sub>2</sub>/MWCNT composites for advanced photocatalytic and photovoltaic applications.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"207 \",\"pages\":\"Article 112874\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725003269\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725003269","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了Au/TiO2/MWCNT三元复合材料的光催化性能和光电性能。XRD, TEM, XPS和UV-Vis分析验证了TiO2和Au纳米颗粒在MWCNT基体中的有效分散。在紫外线照射下,优化后的Au/TiO2/MWCNT复合材料的催化性能比纯TiO2纳米颗粒有显著提高。这种增强源于可见光吸收的扩展、电子-空穴复合的最小化以及Au粒子和MWCNTs促进的有效电荷转移机制。与纯TiO2相比,优化后的复合材料的亚甲基蓝(MB)光降解速率常数提高了2.7倍,紫外照射120 min后亚甲基蓝的降解率达到87%。此外,染料敏化太阳能电池的光电转换效率从纯TiO2的1.26%提高到Au/TiO2/MWCNT复合材料的3.37%。这些改进是由于界面电荷输运增强,比表面积增加,带隙能量降低,以及Au粒子的等离子体效应。PL和EIS测量支持了所提出的电荷机制,并证实了Au/TiO2/MWCNT复合材料中载流子密度的改善。这些发现突出了Au/TiO2/MWCNT复合材料在先进光催化和光伏应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis, photocatalytic, and photoelectric performance of mesoporous Au/TiO2 and Au/TiO2/MWCNT nanocomposites
This study explores the photocatalytic and photoelectric performance of ternary Au/TiO2/MWCNT nanocomposites. XRD, TEM, XPS, and UV–Vis analyses verify the effective dispersion of TiO2 and Au nanoparticles within the MWCNT matrix. Under UV irradiation, the optimized Au/TiO2/MWCNT composite exhibits a substantial enhancement in the catalytic performance compared to pure TiO2 nanoparticles. This enhancement stems from extended visible-light absorption, minimized electron-hole recombination, and effective charge transfer mechanisms facilitated by Au particles and MWCNTs. The optimized composite achieves a 2.7-fold increase in the methylene blue (MB) photo-degradation rate constant relative to pure TiO2, with 87 % MB degradation after 120 min of UV irradiation. Additionally, the photoelectric conversion efficiency of dye-sensitized solar cells increases from 1.26 % for pure TiO2 to 3.37 % for the Au/TiO2/MWCNT composite. These improvements are attributed to enhanced interfacial charge transport, increased specific surface area, reduced band gap energy, and the plasmonic effect of Au particles. PL and EIS measurements support the proposed charge mechanism and confirm the improved carrier density in the Au/TiO2/MWCNT composites. These findings highlight the potential of Au/TiO2/MWCNT composites for advanced photocatalytic and photovoltaic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信