AIM2介导的神经元PANoptosis在糖尿病认知功能障碍中起重要作用

IF 2.6 3区 心理学 Q2 BEHAVIORAL SCIENCES
Chengning Ma, Xiang Zhou, Siyang Pan, Lumei Liu
{"title":"AIM2介导的神经元PANoptosis在糖尿病认知功能障碍中起重要作用","authors":"Chengning Ma,&nbsp;Xiang Zhou,&nbsp;Siyang Pan,&nbsp;Lumei Liu","doi":"10.1016/j.bbr.2025.115651","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing global aging population has led to a rise in diabetic cognitive dysfunction (DCD), a common complication of diabetes that significantly impacts the health of elderly individuals. Neuronal death is a key factor in cognitive impairment, with studies showing interactions between cellular pyroptosis, apoptosis, and necroptosis in the development of neurodegenerative disorders. This has led to the concept of PANoptosis, where these pathways work together to cause cell death. High glucose levels can induce neuronal damage and cognitive dysfunction in rats, leading to various forms of programmed cell death. It is hypothesized that high glucose can trigger neuronal PANoptosis, resulting in cognitive dysfunction. AIM2, an upstream regulator of PANoptosis, is closely associated with the pathogenesis of DCD. In DCD, dysregulated glucose metabolism induces the release of mitochondrial DNA (mtDNA), which acts as a ligand to activate the cell membrane-bound DNA sensor AIM2. Upon activation, AIM2 oligomerizes and recruits a caspase recruit domain (ASC), forming a complex that activates caspase-1. Caspase-1 activation subsequently triggers the production of pro-inflammatory cytokines, induces pyroptosis, and mediates apoptosis, necroptosis, and PANoptosis in neurons through signaling crosstalk. Understanding the pathophysiological mechanism of AIM2-mediated neuronal PANoptosis in DCD development can aid in early diagnosis and identify new therapeutic targets.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"491 ","pages":"Article 115651"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AIM2 mediated neuron PANoptosis plays an important role in diabetes cognitive dysfunction\",\"authors\":\"Chengning Ma,&nbsp;Xiang Zhou,&nbsp;Siyang Pan,&nbsp;Lumei Liu\",\"doi\":\"10.1016/j.bbr.2025.115651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing global aging population has led to a rise in diabetic cognitive dysfunction (DCD), a common complication of diabetes that significantly impacts the health of elderly individuals. Neuronal death is a key factor in cognitive impairment, with studies showing interactions between cellular pyroptosis, apoptosis, and necroptosis in the development of neurodegenerative disorders. This has led to the concept of PANoptosis, where these pathways work together to cause cell death. High glucose levels can induce neuronal damage and cognitive dysfunction in rats, leading to various forms of programmed cell death. It is hypothesized that high glucose can trigger neuronal PANoptosis, resulting in cognitive dysfunction. AIM2, an upstream regulator of PANoptosis, is closely associated with the pathogenesis of DCD. In DCD, dysregulated glucose metabolism induces the release of mitochondrial DNA (mtDNA), which acts as a ligand to activate the cell membrane-bound DNA sensor AIM2. Upon activation, AIM2 oligomerizes and recruits a caspase recruit domain (ASC), forming a complex that activates caspase-1. Caspase-1 activation subsequently triggers the production of pro-inflammatory cytokines, induces pyroptosis, and mediates apoptosis, necroptosis, and PANoptosis in neurons through signaling crosstalk. Understanding the pathophysiological mechanism of AIM2-mediated neuronal PANoptosis in DCD development can aid in early diagnosis and identify new therapeutic targets.</div></div>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":\"491 \",\"pages\":\"Article 115651\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166432825002372\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432825002372","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

全球人口老龄化加剧导致糖尿病认知功能障碍(DCD)的增加,糖尿病是糖尿病的一种常见并发症,严重影响老年人的健康。神经元死亡是认知障碍的一个关键因素,研究表明,在神经退行性疾病的发展中,细胞焦亡、凋亡和坏死亡之间存在相互作用。这导致了PANoptosis的概念,即这些通路共同作用导致细胞死亡。高葡萄糖水平可诱导大鼠神经元损伤和认知功能障碍,导致各种形式的程序性细胞死亡。据推测,高糖可引发神经元PANoptosis,导致认知功能障碍。AIM2是PANoptosis的上游调控因子,与DCD的发病密切相关。在DCD中,葡萄糖代谢失调诱导线粒体DNA (mtDNA)的释放,mtDNA作为配体激活细胞膜结合的DNA传感器AIM2。激活后,AIM2寡聚并募集caspase募集域(ASC),形成激活caspase-1的复合体。Caspase-1的激活随后触发促炎细胞因子的产生,诱导焦亡,并通过信号串扰介导神经元的凋亡、坏死和PANoptosis。了解aim2介导的神经元PANoptosis在DCD发展中的病理生理机制有助于早期诊断和发现新的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AIM2 mediated neuron PANoptosis plays an important role in diabetes cognitive dysfunction
The increasing global aging population has led to a rise in diabetic cognitive dysfunction (DCD), a common complication of diabetes that significantly impacts the health of elderly individuals. Neuronal death is a key factor in cognitive impairment, with studies showing interactions between cellular pyroptosis, apoptosis, and necroptosis in the development of neurodegenerative disorders. This has led to the concept of PANoptosis, where these pathways work together to cause cell death. High glucose levels can induce neuronal damage and cognitive dysfunction in rats, leading to various forms of programmed cell death. It is hypothesized that high glucose can trigger neuronal PANoptosis, resulting in cognitive dysfunction. AIM2, an upstream regulator of PANoptosis, is closely associated with the pathogenesis of DCD. In DCD, dysregulated glucose metabolism induces the release of mitochondrial DNA (mtDNA), which acts as a ligand to activate the cell membrane-bound DNA sensor AIM2. Upon activation, AIM2 oligomerizes and recruits a caspase recruit domain (ASC), forming a complex that activates caspase-1. Caspase-1 activation subsequently triggers the production of pro-inflammatory cytokines, induces pyroptosis, and mediates apoptosis, necroptosis, and PANoptosis in neurons through signaling crosstalk. Understanding the pathophysiological mechanism of AIM2-mediated neuronal PANoptosis in DCD development can aid in early diagnosis and identify new therapeutic targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Behavioural Brain Research
Behavioural Brain Research 医学-行为科学
CiteScore
5.60
自引率
0.00%
发文量
383
审稿时长
61 days
期刊介绍: Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信